
Itemset-based Mining of Constraints
for Enacting Smart Environments

Viktoriya Degeler, Alexander Lazovik
Distributed Systems Group, Johann Bernoulli Institute

University of Groningen, The Netherlands
Email: {v.degeler, a.lazovik}@rug.nl

Francesco Leotta and Massimo Mecella
Dipartimento di Ingegneria Informatica, Automatica e Gestionale

SAPIENZA Università di Roma, Italy
Email: {leotta, mecella}@diag.uniroma1.it

Abstract—In order to automatically control the environment,
smart systems should have sufficient rules, which describe ex-
pected system’s behavior. While such rules may be added man-
ually, usually this requires considerable efforts, often surpassing
those that users are willing to spend to setup the system. In this
paper, we propose a novel technique to mine such rules automat-
ically, given a sensor log from the environment. In particular, we
mine itemsets, but we consider abnormal drops in the frequency
of variable state combinations w.r.t. the frequency of their subsets,
which represent undesirability of these combinations. We evaluate
the technique both on simulated and real datasets, showing that
the approach is effective and promising for further extensions.

I. INTRODUCTION

Systems for smart environments aim at recognizing needs
and wishes of users, and at automatically controlling the
cyber-physical space in order to satisfy them. However, in
order to perform correct actuation actions, i.e., to change the
environment in a desired way, the smart system must have
sufficient information: the expected reactions to certain situa-
tions, the environmental constraints that must be satisfied, the
expected goals to be accomplished, together with the services
(i.e., available actions) to accomplish such goals, etc. As an
example, in smart systems based on planning techniques and
service-composition approaches (e.g., [1], [2]), the required in-
formation includes the description of available actions/services,
the initial state and the final goals to be achieved by performing
these actions. Conversely, in reactive rule-based systems (e.g.,
[3], [4]), the required information includes available sensor
states, constraints over the environment, and current events
(e.g., changes of sensor readings) to which the system should
react in order to ensure the satisfaction of all constraints.

Such behavior rules may be entered manually into the
system, or be based on pre-generated templates and domain
knowledge. The manual creation of rules may be a viable
choice for newly constructed smart systems; the manual addi-
tion of such rules is implementable, through appropriate user
interfaces [5], in smart homes, where such rules inherently
have high degree of legitimacy and correctness, as they by-
creation represent the end-user desires. However, the efforts
to create such rules manually are in most cases much larger
than what users are willing to spend, even if pre-defined rule
templates are taken into account. In larger environments, e.g.,
offices, smart residences for elderly persons, etc., in which
the amount of rules is huge, such efforts are overwhelming
and it is not guaranteed that manual insertion of rules will
not contain internal contradictions, leading to unsatisfiable

situations. Therefore, a promising approach is to obtain the
rules through (fully- or semi-)automated learning, i.e., by
collecting previous observations and inferring the rules from
them. In this work, we aim at inferring rules automatically
from sensor logs. The inferred rules may then be checked by
a domain expert, and augmented or corrected, if required.

In this paper, we propose a novel technique to mine rules
by using a variation of the Apriori algorithm [6]. We mine
rules in the form of environmental constraints, i.e., we aim
at finding restricted combinations of environmental values. In
order to find them, we aim at detecting a sudden abnormal drop
in frequency in logs of a certain variable combination w.r.t. its
subsets. Such an abnormal drop may represent the fact that
this set of values is undesirable, and the respective constraint
should be created. Such mined constraints can be then directly
used in reasoning systems, e.g., similar to the one described
in [3], which are based on constraint satisfaction principles.

The remaining of this paper is as it follows. In Section II,
we introduce preliminary definitions and the conceptual frame-
work for our work. Then Section III describes the proposed
technique, and Section IV validates it both on synthetic data,
and on real ones based on a case study / living lab. Section V
provides a discussion about relevant related work. Finally,
Section VI concludes the paper by outlining promising future
developments.

II. PRELIMINARIES

Let V = {v1, . . . , vn} be a set of variables, each of
them varying over a finite domain Dvi = {dvi

1 , . . . , d
vi
ni
},

describing the current state of the smart environment. Variables
in V can be classified as either uncontrollable or controllable;
uncontrollable variables are bound to sensors whereas con-
trollable ones are bound to actuators. We assume values for
both categories of variables to be accessible (at least during
the mining phase); if for some actuators the assigned values
cannot be directly acquired, we assume the availability of a set
of sensors providing enough information to infer their current
states (in such case a corresponding virtual sensor may be
added).

Following [3], the expected behavior of the smart space
automation system is defined as a set of rules, which must
be satisfied at any particular instant of time. The rules are
defined as predicate logic formulas where atoms take the form
vi = dvik or vi 6= dvik , with dvik ∈ Dvi ; well-formed formulas
are obtained by composing atoms with logical connectives

and quantifiers, such as ¬, ∧, ∨, ⇒, and ⇔. Rules represent
dependencies between variables and can be easily represented
in the form of either allowed or forbidden assignments. As an
example, the reader should consider a rule Jack.location =
room1⇒ room1.lamp = on; the assignments allowed by this
rule for the variables (Jack.location, room1.lamp) are the
following: (¬room1, on), (room1, on), (¬room1, off). The
very same rule can be written in terms of its forbidden
assignment ¬(Jack.location = room1∧room1.lamp 6= on).
It is easy to notice that representing rules as restrictions (or
constraints) requires much less explicit statements, than if
the rules were represented as possibilities, as environments
are usually much more permissive than restrictive. Therefore
we opted to mine rules in the form of constraints over the
environment.

By adopting the terminology of the data mining literature,
the assignment vi = dvik of a single variable to a single value
of its domain will be referred to as an item. An itemset C
is a combination of items such that no variable is seen more
than once in it, i.e., C = {vi = dvik | ∀i 6= j : vi 6= vj}.
Constraints, i.e., forbidden variable assignments, are returned
by the technique presented in Section III-A in the form of
itemsets. A situation S is an itemset assigning a value to all
the variables in V ; a situation represents the snapshot of the
smart space in a given instant of time t(S).

The input to our algorithm is a dataset T = {< S1, w1 >
· · · < S|T |, w|T | >}1; it is obtained by generating, every time
the state of a single variable in V changes, a new couple <
S,w >, where S is a situation and w is a weight assigned to
it. The weight w is a real number, which defines how much S
is significant inside the dataset.

When new situations are not added to the dataset at a
regular pace, being them added after the arrival of a new
measurement, they should be accounted proportionally to the
time ∆(S) they remain valid as current state of the system. If
two situations Sj and Sj+1 are added one after the other to T ,
then ∆(Sj) = t(Sj+1) − t(Sj). Following this intuition, the
weight is calculated as follows:

w =
∆(S)

α
with α =

t(S|T |)− t(S1)

|T | − 1
(1)

Conversely, if new situations are added at a fixed pace,
w can be set to an arbitrary real value β (e.g., during our
evaluation over the real dataset we used β = 1); in this case
two consecutive situations may be equal in terms of variable
values as they represent the very same environment state.

Given an itemset C and a dataset T , we define T C =
{< Si, wi > ∈ T | C ⊆ Si, i ∈ [1, |T |]} as the set of couples
in T whose situations contain C. The weight of C inside T
is defined as follows:

w(T C) =
∑

<Si,wi>∈T C

wi (2)

If wi = β for every couple in T , the definition reduces to
w(T C) = β|T C |.

1Given a set A, we denote with |A| the cardinality of A.

III. RULE LEARNING

The mining technique proposed here is a variant of the
seminal Apriori algorithm [6] employed for mining frequent
itemsets.

Definition 1 (Frequent Itemset). Given an itemset C, its
support in T is defined as the fraction Supp(C) = w(T C)

W ,
where W =

∑|T |
i=1 wi is the sum over the entire dataset T

of the weights wi. An itemset C is told to be frequent if its
support is above a minimum threshold value.

Many variations to the original Apriori algorithm have been
proposed in the literature in order to meet the requirements
of particular applications. In some cases, the discovery of
rare itemsets, instead of frequent ones, may be particularly
useful. If, in the ideal case, an itemset correspondent to a
forbidden assignment should never happen, in practice, this
is not the case, and forbidden combinations still occur due
to erroneous sensor readings, non-immediate reaction of users
and deviations from the standard behavior. An itemset is usu-
ally told to be rare if it has a very low support. Unfortunately,
fixing a very low support threshold for the Apriori algorithm
is not enough to find rare itemsets, as it would generate a
huge number of redundant and unnecessary itemsets; this is
known as the rare itemset problem. Additionally the definition
of rare itemset is application specific. In [7], a rare itemset
is defined as “one which its frequency in the database does
not satisfy the minimum support but appears associated with
the specific data in high proportion of its frequency”. In [8],
a rare itemset is somewhat interesting only if it represents an
exception (e.g., there are many vegetarians and many persons
with cardiovascular diseases, but very few people are both);
thus, the final goal of the proposed Apriori-Rare algorithm
is to compute minimal rare itemsets (mRI), which are those
itemsets that are rare but whose proper subsets are frequent.

Other works, e.g., [9], [10], point out that it may be
more interesting to find combinations of items that are not
necessarily frequent, i.e., they may have low support value, but
a high confidence rate, i.e., high probability of being together
in the same transaction. This consideration is applicable in our
scenario. As an example, the reader should consider a situation
when a person goes to the bathroom, opens a bathroom cabinet,
takes a toothbrush, turns on the water tap, etc. The amount of
minutes people spend doing this activity is very low, comparing
to the full log of the smart space, thus this situation has low
support and cannot be regarded as “frequent”. However, it
can be said with very high confidence that if a person is in
the bathroom, and the toothbrush is taken, then the water tap
is always turned on. A constraint to describe the above case
could be ¬(Jack.location = bathroom∧Jack.toothbrush =
taken ∧ bathroom.watertap = off).

Our definition of “interesting” is somewhat orthogonal to
the above mentioned ones. Instead of fixing a threshold in order
to distinguish frequent from rare itemsets, a dynamic threshold
is computed for each itemset aimed at detecting a significant
drop in its weight with respect to its subsets; we will refer to
such itemsets as restricted.

It can be trivially shown that the support of an itemset
is always smaller or equal than the support of each of its

proper subsets. We formalize this drop by using the concept
of decline:

Definition 2 (Decline). Given two itemsets C and Cp, where
C is obtained by adding a single item to Cp, i.e., by assigning
a value to a variable vi not appearing in Cp (Cp is told to be
parent of C), we define the decline of C with respect to Cp as
w(T C)

w(T Cp)
≤ 1.

Decline is a natural phenomenon as we are constraining
the variable vi to assume a specific value dvij ∈ Dvi . In order
to detect the amount of decline that is abnormal, we can define
the normalized decline as follows:

w(T C)

p(dvij)w(T Cp)
≤ 1 (3)

Here p(dvij) represents the probability of a variable vi to be
in a state dvij . We need this probability, as many variables
in smart environments have non-uniform distribution. For
example, during a working day, a PC has much bigger chance
to be turned on, than being off. Specifically, for variables with
uniform distribution p(dvij) = 1

|Dvi | . For a variable showing a

non-uniform distribution, instead, if T d
vi
j = {< Si, wi > ∈

T | (vi = dvij) ∈ Si, i ∈ [1, |T |]}, we have:

p(dvi
j) =

w(T d
vi
j)

W
where w(T d

vi
j) =

∑
<Si,wi>∈T

d
vi
j

wi (4)

If the normalized decline of an itemset C is close to 1, this
means that the combination of variable assignment it represents
is perfectly admissible for the final users; an abnormal decline
(with much smaller closeness values) may be an indicator that
C is an undesired, restricted, combination. As, in general, the
very same itemset C can be obtained by adding a variable
assignment to a set Cp of different parent itemsets, we define
a restricted itemset as follows:

Definition 3 (Restricted Itemset). An itemset C is told to be
restricted if its normalized decline with respect to each of the
parent itemsets in Cp is less than a predefined threshold r ∈
[0, 1] called “restriction rate”.

As example, assume we have a small environment with
three boolean variables: PC with weights w(PC = 0) = 80,
w(PC = 1) = 137; LCD with weights w(LCD = 0) = 145,
w(LCD = 1) = 72, and chair PR[essure] with weights
w(PR = 0) = 92, w(PR = 1) = 125. The weights of
combined itemsets w({PC = 1;LCD = 0}) = 65 and
w({PC = 1;LCD = 1}) = 72 both represent normal decline
rate, and therefore are considered permitted. On the other hand,
the weight of itemset w({PC = 0;LCD = 1}) = 0 clearly
indicates that such situation is restricted and will generate a
constraint ¬(PC = 0∧LCD = 1), which represents physical
constraint that LCD cannot be turned on if the PC is off.
Another situation w({LCD = 1;PR = 0}) = 2 is also
restricted, because the decline rate from both parents (with
weights 72 and 92) is still large enough, even though the
situation happened for a couple of minutes. This constraint
shows that there is a big preference to turn off a monitor if
no-one is sitting in front of the PC.

Algorithm 1 Find restricted variable sets
1: function findConstraints (T - dataset; r - restriction rate)
2: for all dvij ∈ Dv1 ∪ · · · ∪Dvn do

3: p(dvij)← |vi=d
vi
j |

|T |
4: end for
5: R ← {1-itemsets S s.t. w(T S)

|Dvi |∗|T | < r}
6: I ← {all 1-itemsets}\R
7: while |I| > 0 do
8: C ← getSetOfChildren(I)
9: I ← ∅

10: for all C ∈ C do
11: WP ← ∅
12: for all P ∈ parents(C) do
13: dvi

j ← addedV alue(P,C)

14: WP ←WP ∪ {w(T P)p(dvij)}
15: end for
16: if w(T C)

min(Wp)
< r

17: R ← R∪ {P}
18: else if w(T C) > 0
19: I ← I ∪ {P}
20: end if
21: end for
22: end while
23: return R

A. Algorithm description

Our approach to mine constraints in a smart environment
is listed in Algorithm 1. The algorithm takes as input a dataset
T and the desired restriction rate r, and it returns as output a
set R of restricted itemsets representing constraints. As a first
step, the distribution p of domain values is calculated (lines
2-4).

Following the original Apriori algorithm, at every iteration,
the algorithm processes itemsets with increasing size stored in
the set C. At the k-th iteration, C contains only k-itemsets
(itemsets containing exactly k items) obtained by combin-
ing (using the getSetOfChildren function at line 8) those
(k− 1)-itemsets, contained in the set I, that was not declared
as restricted at the (k − 1)-th iteration. Given a k-itemset C,
its parents are those (k − 1)-itemsets contained in I such
that all their items are contained in C. Thus, every itemset
has a number of parents equal to its size. As an example,
suppose I = {{v1 = dv1 , v2 = dv2}, {v1 = dv1 , v3 =
dv3}, {v2 = dv2 , v3 = dv3}}, then getSetOfChildren(I) =
{{v1 = dv1 , v2 = dv2 , v3 = dv3}}. Before iterations begin,
R is initialized with all restricted 1-itemsets, and I is ini-
tialized with all the possible 1-itemsets, except those that are
restricted. We regard 1-itemset as restricted if its closeness
to the uniformly distributed values is less that the restriction
rate. During each iteration the set I is immediately emptied
and will be filled with the itemsets to be expanded during the
successive iteration; the algorithm stops as soon as, after the
conclusion of an iteration, I is empty (see line 7).

During a specific iteration, the weight of each itemset C ∈
C, is compared to a dynamically computed threshold dependent
on the value of r. Restriction rate represents the maximum
decline value for considering an itemset as restricted. As a C
has, in general, more than a single parent, the abnormal decline

should be registered for all its parents in order to declare it as
restricted. To this aim, it is sufficient to compare r with the
maximum value of decline calculated (see line 16).

At every iteration, all the itemsets in C that satisfy the
condition at line 16 are put into the set R of constraints (see
line 17). Itemsets in C that do not satisfy the same condition are
put into the set I (see line 19), unless their weight is equal to
0, which means that the corresponding combination of values
is never seen in the dataset, so there is no point in trying to
expand it further. This happens when the decline difference of
all itemset’s parents never exceeded the restriction rate, which
means decline was always within expected limits until finally
reaching 0.

IV. VALIDATION

We assessed the performance of the proposed algorithm
by running different experiments on both synthetic and real
datasets. Tests on the synthetic dataset highlight how much the
accuracy changes by tuning different parameters (see Section
IV-A). The evaluation on the real dataset shows the effective-
ness of the algorithm in a realistic application scenario.

During the evaluation, accuracy results represent the simi-
larity of original rules and mined ones by constructing the full
truth table for all n variables, and counting the combinations of
sensor values in the table returning the same result (“allowed”
or “restricted”) for both original and mined rules.

A. Validation on Synthetic Datasets

As it is very difficult to obtain datasets large enough to
evaluate algorithms in a wide range of input configurations, a
first quantitative evaluation has been conducted on a config-
urable synthetic dataset.

For these experiments we used a generation tool producing
a dataset T consisting of |T | situations. A situation binds n
boolean variables; however, it is always possible to transform a
discrete variable into a set of boolean variables. As previously
discussed, each of the produced situations is supposed to
have an associated weight; as the generation tool generates
situations at a constant pace, the weight is always equal to
β = 1. A parameter pc represents the probability that at each
discrete time step the state of the environment changes; pc
reflects how much the simulated environment is dynamic.

The synthetic dataset is built by trying to respect a ran-
domly generated set of nc constraints; each constraint binds
up to 4 variables, as this is a reasonable limitation for a real
environment. Violations to rules are accepted with a probability
pv , which represents how much the inhabitants of the simulated
environment are prone to deviate from their usual behavior (the
one we aim to mine). Finally a parameter pp represents the
probability that a violation is maintained after a single step;
after k steps this probability becomes pkp .

At every step with probability pc a change is applied to a
variable; supposing this change introduces nv new violations
and solves ns previously introduced violations, the probability
of adding this change to the dataset is equal to pnv

v ·
∏ns

i=1(1−
pki
p), where ki denotes the number of steps since i-th violation

was introduced.

nc = 5 nc = 7 nc = 9 nc = 11

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
pv

ac
cu
ra
cy

r

0.1

0.3

0.5

0.7

0.9

Fig. 1. Accuracy of the algorithm in terms of correctly interpreted situations.

nc = 5 nc = 7 nc = 9 nc = 11

0

5000

10000

15000

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
pv

fp

r

0.1

0.3

0.5

0.7

0.9

(a) False positives (fp)

nc = 5 nc = 7 nc = 9 nc = 11

0

10000

20000

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
pv

fn

r

0.1

0.3

0.5

0.7

0.9

(b) False negatives (fn)

nc = 5 nc = 7 nc = 9 nc = 11

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
pv

pr
ec
is
io
n

r

0.1

0.3

0.5

0.7

0.9

(c) Precision

nc = 5 nc = 7 nc = 9 nc = 11

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
pv

re
ca
ll

r

0.1

0.3

0.5

0.7

0.9

(d) Recall

Fig. 2. Analysis of the errors introduced by the algorithm.

Figure 1 and Figure 2 represents the results obtained
by applying our algorithm to different significant parameters
of both the algorithm and the generation tool. Each facet
represents the performance of the algorithm with a different
number nc of constraints. The performance of the algorithm,
with respect to the probability pv of adding a violation, is
calculated for five different values of the r parameter (see
Section III-A), namely: 0.1, 0.3, 0.5, 0.7 and 0.9. Each single
condition has been repeated 20 times using different values
of the pp parameter2. All the conditions generate a number
of situations |T | = 10000 by keeping the probability pc of
changing the environment fixed to 0.8 and the number n of
variables fixed to 15.

Parameter r tells the algorithm how much the actual decline
should differ from the expected one in order to declare a
constraint as restricted. Figure 1 shows how for low values of
pv , putting r = 0.5 provides the best results, with an accuracy

2During our evaluation we noticed that pp has a small influence on the
achieved accuracy.

greater than 75% when pv is less than 0.2. On the other hand,
the higher is the value of pv , the higher will be the number
of violations inside the dataset, thus, the higher will be the
weight of the constraint inside the dataset; as a consequence,
in order to declare an itemset as restricted we need r to have
an high value.

Figure 2 thoroughly inspects how the errors committed by
the algorithm are distributed. It can be noticed how, except
for high values of the parameter r, the algorithm provides
very good performances in terms of false positives, intended as
situations allowed in the original dataset that are forbidden by
the mined constraints; this means that the proposed algorithm
does not introduce unwanted restrictions. From the point of
view of false negatives, intended as situations forbidden in
the original dataset that are allowed by the mined constraints,
the performances of the algorithm quickly get worse for small
values of r as either pv or nc increase. As a consequence
of the previous considerations, small values of r increases
the precision of the algorithm; conversely, high values of r
increases the recall provided by the algorithm.

For small values of r, the mined rules are very close to the
original set and this makes them useful if we aim at mining
original constraints for enacting the smart environment. On the
other hand, by increasing the value of r, the algorithm will
over-fit the original data by producing a set of rules with an
high cardinality that is very different from the set of constraints
employed to generate the dataset. Nevertheless rules extracted
with high values of r can be still employed for detecting
unusual conditions of the environment without automatically
perform any modification to the environment.

Even though results get worse as either pv or nc increase,
putting r = 0.5 provides, overall the best results. Moreover, it
is likely to expect that rules that the users want to be respected
are not violated more than 15% of the time.

B. Living Lab Case Study

To evaluate the algorithm on real dataset, we used the
dataset obtained from previous experiments for a small living
lab. Here we briefly explain the design of the experiment and
the results. The experiment was performed on the premises
of the University of Groningen, where two identical working
rooms were populated with sensors and sensor data was
collected for three days. The original setup is described in
details in [11]. Each room contains a desk with PC, LCD,
two motion (PIRK, PIRM), two acoustic (AC, ACK), and two
chair pressure (PR1, PR2) sensors. The goal of the original
experiment was to use the rules of the environment to find and
resolve sensor errors to improve activity recognition (AR) rate.
Therefore the rules of environment were written manually. In
this experiment we used the original sensor data (before sensor
errors correction, as it was using manually written rules) and
applied our algorithm to it to mine the rules automatically.
We then used those mined rules and compared them with
the original manually created ones. Note that original sensor
data was quite noisy, with activity recognition rate from the
original data being 80.9% in the first room and 76.3% in the
second one. Sensor readings were collected once every minute
during working hours. Three days of data from two different
rooms with identical setup were combined to obtain a log of

TABLE I. MANUAL VS MINED CONSTRAINTS (SHOWN AS ITEMSETS)

Original Mined
LCD=T PC=F PC=F

LCD=T PR1=F PR2=F AC=T PR2=T
LCD=T PIRK=F ACK=F PR2=T

PIRK=T PR1=F PR2=F LCD=T PIRK=F
AC=T ACK=F PIRK=F PR1=F PR2=T
AC=T PIRM=F ACK=T PIRK=T PIRM=F PR1=F PR2=F

AC=F PR1=T PR2=T AC=T ACK=T PIRK=F PR1=T

2402 situations in total. Among those situations 199 (8.3%)
minutes represented the full absense of people in a room; 344
(14.3%) situation represented presense of people in a room,
but not in front of a PC or sitting at working desks; during
70 (2.9%) minutes in total meetings were held; 395 (16.4%)
situations represented different types of paperwork, i.e. people
working at a desk, but not with PCs; and 1394 (58.0%) minutes
were dedicated to working with PCs. Note that several sensor
value combinations can sometimes represent the same type of
a situation, for example working with PC may happen with
background motion sensor showing motion or not.

The original and mined constraints are shown in Table I.
There are several interesting points to mention. For example,
the algorithm found the constraint ¬(PC = F). This con-
straint was not part of the manual rules. However, all data
collection was done during working hours, and during all that
time both PCs in both rooms were always turned on. That
means that the found constraint represents the preference rule
“During the working day PC should be turned on”, which
follows directly from actual users behavior, and therefore in
some sense is more representative of the actual situation than
manually written rules were. Some constraints, as ¬(LCD =
T ∧PIRK = F) are contained in both the original and mined
sets, while others, as ¬(PIRK = T ∧PR1 = F ∧PR2 = F),
are found as a part of more restrictive constraints, namely
¬(ACK = T ∧ PIRK = T ∧ PIRM = F ∧ PR1 =
F ∧ PR2 = F). The accuracy results were that for 256
combinations of the truth table, 185 were the same (72.3%),
while 71 were different. Noteworthy, the obtained accuracy is
comparable to that reported in [12], where Event-Condition-
Action rules in smart environments are mined.

The less regular human behavior is the bigger the input
dataset needs to be in order to not integrate spurious behavior
into the results. As in our experimental setup users were
instructed to execute routines in a predefined way, three days
of recordings are enough in order to obtain good results. In
order to perform experiments over a not specifically designed
real dataset, the size of the dataset needs to be selected in order
to represent the average behavior of the users.

V. RELATED WORK

Data mining techniques have been already employed in
smart environments in order to infer human habits or unusual
(e.g., dangerous) situations. Authors in [13] applies (point-
wise) inter-transaction association rules (IAR) mining in order
to detect emerging (i.e., unusual) behaviors; the first step
consists of mining IAR rules from sensor logs, whereas
emerging ones are identified, as a second step, during runtime
by comparison. The real world data consisted of event logs
from an array of state-change sensors. The SPUBS system [14]
merges concepts from both data mining and workflow mining.

The proposed technique is mainly supervised and supposes
the availability of a huge amount of labeled data. The CASAS
project employs a pattern mining technique [15], [16] in order
to discover human activity patterns. This method allows to
discover discontinuous patterns by iteratively trying to com-
press the dataset. A pattern is defined as a set of events where
order is not specified and events can be repeated multiple
times. The data mining method employed for activity discovery
is completely unsupervised without the need of manually
segmenting the dataset or choosing window sizes.

All the aforementioned works differ from our technique
as they all are event-based and mainly focused on the run-
time recognition of activities. Conversely, we concentrate on
discovering unusual states of the environment in order to
generate reactive rules that are triggered in the case mined
constraints are violated. From this point of view, the final goal
is similar to that of the APUBS [12] system. APUBS mines
simple Event-Condition-Action (ECA) rules, where an ECA
rule takes the form “ON event IF condition THEN action”.
Still, the approaches are different, as while APUBS inherits
from SPUBS a workflow-based approach, we do not impose
any order between state changes. This allows us to mine human
habits from a different point of view. Suppose, as an example,
that users never use the washing machine and the dishwasher
at the same time; this kind of rule cannot be mined using
the approach employed by APUBS as it is not possible from
any log to directly define a sequence relationship between the
power switch events of the two devices.

VI. CONCLUDING REMARKS

In this paper we have presented a novel technique for
mining constraints in smart spaces. The key idea of our
technique, based on the Apriori algorithm, is to consider
abnormal drop of support of a certain variable combination
w.r.t. its parents, as this may represent undesirability of this
combination, and therefore it may be regarded by the system
as an environmental constraint.

As a main contribution, differently from previous works,
which extract ordered workflow of events representing human
habits, the proposed approach focuses on the state of the
environment in order to mine undesired situations that can be
used to extract reactive rules for smart environments.

Our evaluation demonstrates that the algorithm indeed
discovers the desired constraints even if errors and undesirable
situations are present in a sensor log. In future work, our aim
is to continue evaluation with bigger and real datasets. In this
sense, integrating ontologies of devices into the mining process
would allow to extract restricted rules also taking into account
the semantic relationships among devices.

This algorithm represents a first step towards the design
of techniques aimed at mining complete user habits over the
environment.

Acknowledgments. This work has been partly supported by the EU project GreenerBuild-
ings (contract FP7-258888). The work of Viktoriya Degeler has been partly performed
when a visiting internship student at Sapienza Università di Roma. The work of Francesco
Leotta and Massimo Mecella has been also partly supported by AriSLA through the
Italian project Brindisys, by Regione Lazio and FILAS through the “Progetto Sensoristica
Interconnessa per la Sicurezza”, and by SAPIENZA Università di Roma and DIAG
through the grant “Assegni di Ricerca 2012”.

REFERENCES

[1] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello, “Coordinating
the web of services for a smart home,” ACM Trans. on the Web, vol. 7,
no. 2, 2013.

[2] M. Caruso, C. Di Ciccio, E. Iacomussi, E. Kaldeli, A. Lazovik, and
M. Mecella, “Service ecologies for home/building automation,” in Proc.
10th International IFAC Symposium on Robot Control (SYROCO 2012).

[3] V. Degeler and A. Lazovik, “Dynamic constraint reasoning in smart
environments,” in Proc. 25th IEEE Int. Conf. on Tools with Artificial
Intelligence (ICTAI 2013).

[4] V. Degeler, L. I. Lopera Gonzalez, M. Leva, P. Shrubsole, S. Bonomi,
O. Amft, and A. Lazovik, “Service-oriented architecture for smart
environments,” in Proc. 6th IEEE Int. Conf. on Service Oriented
Computing and Applications (SOCA 2013)

[5] C. Di Ciccio, M. Mecella, M. Caruso, V. Forte, E. Iacomussi, K. Rasch,
L. Querzoni, G. Santucci, and G. Tino, “The homes of tomorrow:
Service composition and advanced user interfaces,” ICST Transactions
on Ambient Systems, vol. 11, no. 10-12, p. e2, 12 2011.

[6] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th Int. Conf. Very Large Data Bases (VLDB 1994).

[7] H. Yun, D. Ha, B. Hwang, and K. Ho Ryu, “Mining association rules
on significant rare data using relative support,” Journal of Systems and
Software, vol. 67, no. 3, pp. 181–191, 2003.

[8] L. Szathmary, A. Napoli, and P. Valtchev, “Towards rare itemset min-
ing,” in Proc. 19th IEEE Int. Conf. on Tools with Artificial Intelligence
(ICTAI 2007).

[9] Y.-L. Cheung and A. W.-C. Fu, “Mining frequent itemsets without
support threshold: with and without item constraints,” IEEE Trans. on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1052–1069, 2004.

[10] Y. S. Koh and N. Rountree, “Finding sporadic rules using apriori-
inverse,” in Proc. 9th Pacific-Asia Conference on Advances in Knowl-
edge Discovery and Data Mining (PAKDD 2005).

[11] T. A. Nguyen, V. Degeler, R. Contarino, A. Lazovik, D. Bucur, and
M. Aiello, “Towards context consistency in a rule-based activity recog-
nition architecture,” in Proc. Int. Symposium on Ubiquitous Intelligence
and Autonomic Systems, 2013.

[12] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. J. Cook,
“Discovering frequent user–environment interactions in intelligent en-
vironments,” Personal and Ubiquitous Computing, vol. 16, no. 1, pp.
91–103, 2012.

[13] S. Lühr, G. West, and S. Venkatesh, “Recognition of emergent human
behaviour in a smart home: A data mining approach,” Pervasive and
Mobile Computing, vol. 3, no. 2, pp. 95–116, 2007.

[14] A. Aztiria, A. Izaguirre, R. Basagoiti, J. C. Augusto, and D. J.
Cook, “Automatic modeling of frequent user behaviours in intelligent
environments,” in Proc. 6th Int. Conf. on Intelligent Environments (IE
2010).

[15] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-Edgecombe,
“Discovering activities to recognize and track in a smart environment,”
Knowledge and Data Engineering, vol. 23, no. 4, pp. 527–539, 2011.

[16] D. Cook, N. Krishnan, and P. Rashidi, “Activity discovery and activity
recognition: A new partnership,” Cybernetics, IEEE Transactions on,

vol. 43, no. 3, pp. 820–828, 2013.

