
Service-Oriented Architecture
for Smart Environments

Viktoriya Degeler∗, Luis I. Lopera Gonzalez†, Mariano Leva‡, Paul Shrubsole§,
Silvia Bonomi‡, Oliver Amft†, and Alexander Lazovik∗

∗Distributed Systems, Johann Bernoulli Institute, University of Groningen, The Netherlands
Email: {v.degeler, a.lazovik}@rug.nl

†ACTLab, Signal Processing Systems, TU Eindhoven, The Netherlands
Email: {l.i.lopera.gonzalez, o.amft}@tue.nl

‡ Dipartimento di Ingegneria Informatica Automatica e Gestionale “Antonio Ruberti”, “Sapienza”, University of Rome
Email: {leva,bonomi}@dis.uniroma1.it

§Philips Research, Eindhoven, The Netherlands
Email: paul.shrubsole@philips.com

Abstract—The advances of pervasive technology offer new
standards for user comfort by adding intelligence to ubiquitous
home and office appliances. With intelligence being the core of
some newly constructed buildings, it is important to design a
scalable, robust, context-aware architecture, which not only has
enough longevity and evolving capabilities to sustain itself over
the building’s lifetime, but also provides enough potential for
additional features to be added to the core Building Management
Systems (BMS). Such features may include energy preserva-
tion system, or activity-recognition techniques. Service-Oriented
Architecture (SOA) principles provide great tools that can be
applied to the smart buildings design, however certain specifics
of pervasive systems should be taken into account, such as high
heterogeneity of available devices and capabilities. In this paper
we propose an architecture for smart pervasive applications,
which is based on SOA principles and is specifically designed
for long-term applicability, scalability, and evolution capabilities
of a BMS. We validate our proposal by implementing a smart
office on the premises of the Technical University of Eindhoven
and showing that it complies with the requirements of scalability
and robustness, at the same time being a viable BMS.

I. INTRODUCTION

The advances of pervasive technology offer a new level of
standards for user comfort within smart buildings. The tools
to automatically adjust a building’s behavior to satisfy the
immediate user needs are becoming increasingly widespread,
even if so far only on smaller scales of a single room or
several interconnected devices. The growing trend of increase
in numbers and popularization of smart buildings requires the
standardization of smart systems, not only on the level of single
applications, but also on the level of architecture requirements.
There are several issues to be tackled on the way to full
adoption of such systems. One of the problems arises from a
large discrepancy between the average lifespan of a building,
and the average useful lifespan of a smart system that is in-
stalled within one. The current smart houses, constructed with
the use of the latest smart systems, will have those systems
outdated after a decade, even though the building itself is still
regarded as a newly constructed. This trend can easily be seen
on the buildings constructed in late 90’s - early 2000’s, with
smart lighting systems which today can not be easily overriden
or changed to newly developed ones. Sometimes enormous

amount of work is required to retrofit existing buildings with
even a single newly developed system, for example, energy
saving or smart heating mechanisms. By introducing SOA
principles to buildings’ design, the evolvability of buildings’
smart systems will greatly increase, allowing older buildings
to stay on par with newly constructed ones for much longer
periods of time. Many current buildings come with pre-existing
solutions that contain largely hardcoded behavior. “Turn off
lights after several minutes of no motion” is arguably one of
the most commonly used rules, defined on the lowest level
of the lighting system. When combined with the absence of
manual switches, the rule often leads to frustration among
users due to a large number of false negatives. The deep
hardcodedness of such a rule makes it practically impossible
to use more sophisticated activity recognition techniques for
presence monitoring. The additional complexity arised from
inability to easily transfer the solution for one building to
another one, which results in similar sets of simple rules being
implemented in new buildings again and again, and prevents
the system from growing in power and complexity.

A service-oriented approach to design and development of
a building management system (BMS) that we propose allows
to mitigate these issues. To validate our approach, we have im-
plemented an intelligent office on the premises of the Technical
University of Eindhoven, the Netherlands. Our architecture
allows for addition of any number of complementary services,
as long as they conform to the Software as a Service (SaaS)
paradigm. Among modules added to our intelligent office are
activity recognition, thermo-fluid dynamics, reasoning module
that is based on constraint satisfaction techniques, etc. It is
essential for longevity of a smart building system to change
its behavior based on new user requirements without the need
to change the basic installation and hardware. By introducing
SOA principles we make it easier for the building to keep
up with the evolution of smart systems. The building that
hosts our intelligent office was constructed in seventies and
required a big initial effort to add the capabilities for smart
reasoning. However, the system behavior can now be changed
effortlessly via the user defined rules, which users can add or
remove dynamically. The additional reasoning allows not only
to satisfy user requests, but also to choose the most energy



efficient way of doing it.

We describe the related research efforts in Section II.
Section III overviews our solution, and provides details of
the proposed architecture. Section IV describes the important
services, and Section V provides the details of the installation
and performance results. Section VI concludes the paper.

II. RELATED WORK

Service-oriented composition techniques are sought to be
applied to the smart environment systems middleware in many
modern projects. The role of web services in the area of
domotics is discussed in [1]. The authors identify the main
scenarios of web services usage, discuss publish/subscribe
standards for such services, and present a possible architecture
of a domotic environment for an elderly person as a case study.

The importance of a common formal context model for
a service-oriented middleware is discussed in [2]. Authors
propose a middleware architecture which uses context repre-
sentation based on Web Ontology Language (OWL). Similarly,
in [3] authors tackle cross-domain data integration for energy
smart platforms by linking building data in the cloud to create
a graph of relevant information for building management using
the Resource Description Framework (RDF) notation.

Diverse techniques are applied to the smart buildings
projects’ architecture design. The description of architecture
patterns, common for such projects, is presented in [4]. This
study shows the importance of layered structure of the ar-
chitecture, and discusses the significance of every individual
module within the full system. Thorough surveys of different
intelligent building projects are presented in [5], [6]. The
MavHome [7] project and ongoing CASAS [8] project aim
at full building’s automation by discovering patterns of de-
vices’ usage via appropriate learning algorithms. They provide
predictions of future usage and produced many datasets of ac-
tivities, sensor data, etc. iSpace and iDorm [9] project features
a dormitory room which automatically adjusts to user’s habits,
minimizing explicit requests from their side. The SmartLab
Research Laboratory [10] creates a model of context-aware
environment, which may be used by other projects, built on
top of it, such as Assistive Display, ubiClassRoom, Eldercare.
The Smart Homes for All (SM4All) project [11] constructed
a smart apartment in Rome, Italy, which features the usage of
sophisticated AI planning techniques and the Brain-Computer
Interface to simplify the home control for disabled people.

III. SYSTEM OVERVIEW

GreenerBuildings (http://www.greenerbuildings.eu/) is a
European FP7 project, which aims to create a smart automated
environment that combines automation for user satisfaction
with energy-efficient environment adaptation. As a part of the
project, an intelligent office is constructed on the premises
of the Technical University of Eindhoven, The Netherlands.
The project allows its users (i.e. people within a building) to
establish and modify the rules of the building’s behavior, so
that the system automatically adapts to their needs by using
the context information. The project features advancements in
many research areas, including wireless sensor networks, smart
grids, activity recognition, thermo-fluid dynamics, etc. The
GreenerBuildings project architecture is shown in Figure 1.

Fig. 1: GreenerBuildings Architecture

The Physical layer is responsible for handling the devices
of the system, including sensors and actuators, and for the
underlying low-level protocols. There are many different types
of devices, among those are Plugwise devices, KNX controllers
for blinds and heating system, motion, light, CO2, and temper-
ature sensors, etc. Though devices are operated via different
protocols, the Sensors and Actuators Gateway service collects
all information from raw devices and presents it in a uniform
manner to higher levels of the system. The Interconnection
with Smart Grid service provides the ability to be aware of
the external energy pricing, and internal vs. external energy
availability (e.g. from an internal wind turbine vs. external
energy providers). The awareness about energy supply helps
the GreenerBuildings system to adjust its demand and reduce
the energy costs of the building operation.

The Ubiquitous layer ensures the proper operation of the
whole system. The Repository is the database of the system.
It contains all information about devices, their configuration,
states, available actions that are represented as web services,
and energy consumption. It also logs historical information
about environment state which can be retrieved later for
detailed analysis. The Context component collects information
from sensors and transforms it into a high-level domain
knowledge. This includes activity recognition, to represent
such high-level activities as “a person is working with the
computer”, “there is a meeting/presentation in the room”, etc.
The Orchestration service is responsible for properly executing
actions in a concurrent asynchronous way.

The Composition layer contains the Control service, which
represents the system’s interface to its users, including web
interface, smartphones applications, dashboards, etc., and the
Composition service, which is the main reasoning and deci-
sion making component of the system. The Composition, in
turn, contains the Rule Maintenance Engine, which gathers
information about user preferences, and decides, which goal
state the system should be transformed into, to ensure the
maximum user comfort and the minimum energy consump-
tion; the Planner, which finds the actions to be executed to
transform the system to this goal state, and the Computational

http://www.greenerbuildings.eu/


Fluid Dynamics (CFD), which handles the heating part of the
building, including HVAC, air quality, etc.

IV. APPLICATION SERVICES

A. Sensors and Actuators Gateway

Current BMS have many sensors and actuators that often
have to be designed specifically for the selected brand of
the BMS, severely limiting the choice of devices. In other
situations, when it is necessary to include sensors and actuators
from different brands, arises a problem that different sensors
have different communication protocols. The sensor and ac-
tuator gateway (SAGW) is a service that allows communica-
tion protocol standardization and interoperability. It translates
protocol specific data to the GreenerBuildings communication
standard and back. As new sensors, actuators and communi-
cation protocols become available, the SAGW can be easily
upgraded to support them. The SAGW is not centralized,
specific instances can deal with parts of the available network,
instances take care of parts of the building, improving resource
usage, e.g. bandwidth. SAGW is compatible with available
networks in buildings making retrofitting the building much
easier, and lowering the cost of installation even in new
buildings as there is no need to add additional specialized
hardware to achieve full building communication. The SAGW
uses the distributed configuration service (DCS) to publish
available variables, allowing context and orchestration services
to communicate regardless of changing network configura-
tions. This simplifies maintenance and makes the architecture
robust.

B. Repository

The repository service manages the different storage needs.
They are classified in three main categories: building descrip-
tion, service description, and context history.

Building description is a hierarchical tree structure that de-
scribes the building, and its physical locations. The repository
uses the concept of a cell. It is defined as any physical location
that has “contains” property, i.e. can contain other devices or
other cells. It can also have any number of properties like
location, area or volume. This representation supports even
bigger abstractions like university campus or industrial parks,
so several buildings can be managed together.

Service description contains all the information pertinent
to a physical device or contextual variables. In the Greener-
Buildings architecture, there is sensor and actuator data which
corresponds to a physical device, and context data that is com-
puted from the sensor data via activity recognition techniques.
To simplify operation and component communication, all types
of data are transformed into a single representation, system
variables. It is a service that can be instantiated as many
times as it is needed, with properties to support the differences
between the types of data. The definition of the system variable
uses two concepts: first it defines a service type, and second
a service instance. The service type contains all the general
properties that can be applied to a service instance. It is used to
store things such as virtual representations, range of operation,
control signals, expected values or ranges. The service instance
is the implementation of the service type. It stores, among other
things, the location where it is installed and the current value.

Context history stores the history of all variables. For each
update, it stores the new value and the corresponding time
stamp. This information can be used by reporting tools to
generate building usage statistics. It is also used by the Context
component to learn preferences and user behavior that allows
to improve the comfort and energy saving.

C. Context

In most BMS control decisions are made over direct mea-
surement of sensor values. This approach makes the control
logic extremely complex. This causes building administrators’
tendency to use rather simplistic interconnections between
devices. The Context service is designed to simplify and enrich
the available information about the environment, which can
be used to make control decisions. It generates an abstraction
layer that allows building managers to specify simple control
rules over context variable instead of direct sensor input [12].
For example, the presence variable can be defined in terms
of a motion sensor, a power consumption of the PC screen
and a door sensor. As more sensors become available, more
complex user activities can be recognized e.g. desk work, a
meeting, or a presentation [13]. These high level constructs
provide the required granularity to improve user comfort while
maintaining energy saving [14]. Instead of only simple turn
on/off functionality being available based on the presence
sensor, with different activities being detected, more precise
light scenarios could be applied, e.g dimming of overhead
lights to a comfortable level.

The design of a perfect static system that provides com-
fortable room settings for all users under all conditions is not a
feasible task due to large variance of user preferences and their
perception of comfort. Therefore the context service learns
from the user behavior and adjusts to better detect the context
variables or give information to modify the control rules. Over
time the system gets individualized to the preferences of the
occupants of each space. The context service uses Context
Recognition Network Toolbox (CRNT) [15] that allows to
instantiate processing chains that produce the context variables
required by the system. Each chain can be tuned to better take
advantage of the available sensors that could aid to precisely
compute the context variable. The chains use the DCS to locate
the SAGW that provides the required sensor data, then publish
the result to the event management system and finally send the
value to the repository.

D. User Control

Many modern building automation installations are remov-
ing the ability for users to override default energy saving
behaviours in order to provide a more quantifiable estimate
on a return on investment of automation technology. For
example, ASHRAE regulations in the U.S. are encouraging
lighting control systems that are linked to occupancy sensors
for energy saving, but as a result, there is a tendency to
omit switches and dimmers. Moreover, facility managers are
hesitant to promote the notion of user control in their infras-
tructure because they believe that users will select relatively
high energy settings [16]. However, studies have shown that
many users select energy settings that are significantly below
recommended norms when they are provided with usable,
personal controls, especially when the required environmental



conditions are task-dependent (such as computer work) [17].
Moreover, from a system view, the use of personal controls
provides a rich source of contextual information about the
satisfaction level of users in relation to the automatic behaviour
of the system. To this end, the GreenerBuildings architecture
specifies a user control component to support rich forms of
interaction with the building system.

The Control service provides the UI between the user and
the GB system in order to control its behaviour (both syn-
chronously and asynchronously), based on the desired effects
and possible contexts of an area within a building. It does this
by enabling users (or building administrators) to design rules
for energy efficient, comfortable building adaptation and by
allowing users to stipulate (during actual usage) goals via an
appropriate UI that can be translated into actuation commands
that are compatible with the composition component. These
goals are assumed to be contextually driven by occupant com-
fort needs and will therefore always override the default energy
saving strategy of the rule maintenance system at a particular
time. The control component also provides contextual feedback
and feed-forward information that should be presented via
events from the context and composition components.

The Control service translates UI events into control actions
and aggregates incoming context data for rendering building-
states to different users in the building. The translation can
be made at multiple levels of abstraction from device-specific
actions to topic-level actions (e.g. relating to desired light
levels rather than to actual lighting actuator states). In order
to translate user actions into energy-sensitive system goals,
the control component receives events via Event Management
service and binds them to user goal requests. Events are
categorised by the device descriptions and are linked to a
particular environmental effect within the building. They can
be mapped to high or low-level building automation commands
that are sent to the RME service. In addition, the control
service provides timely feed-forward and feedback information
about errors or conflicts that may arise when a user goal
is requested. Here the rule maintainer forwards notifications
and control possibilities to the control component when an
actuator error is detected and the subscribed context variable
can be used to give relevant information in the user interface.
Finally, the control service is responsible for the development
of building control rules and to stipulate building control goals.
Here, the control component provides a simple means for a rule
designer to develop new rules and delete old ones.

E. Rule Maintenance Engine

The Rule Maintenance Engine (RME) is a reasoning
mechanism to find actions to be performed by actuators in
response to environment events. It runs as a back-end service,
with REST interface enabled to be used by UI to display
information to users via Web or Android devices, or by other
services to make modifications to the system programmatically.

The initial configuration of the RME system and the latest
values of sensors are loaded at startup from the Repository,
and initial environment check is immediately performed. This
makes the system tolerant to failures and crashes, as it au-
tomatically returns to its latest state after restart. Users may
override any part of the environment configuration or behavior

rules dynamically, without the need to restart the system. Every
behavior rule is a formula in predicate logic, it can be added in
any form by the users, then it will be checked for correctness,
consistency and it will be dynamically rechecked when new
sensor readings arrive [18].

The RME UI dashboard contains the information about
the current environment state; the commands, issued to the
actuators, and whether they are executed or not; whether there
are rules which cannot be satisfied at the moment; which
manual goals were set by system’s users previously, etc. This is
one of the main dashboards available to users, through which
they can control the system and keep track of its status.

The main source of events are sensors that detect changes
in the environment. Since there may potentially be hundreds
of events per second, the scalable and highly reliable event
management system (EMS) is used to transfer this information.
Effectively both low-level sensors and high-level recognized
activities are represented uniformly within the RME, irrespec-
tive whether it is a single sensor which represents a pressure on
a chair, or several sensors are combined together to represent
a value of a domain-level “computer work” activity, which
represents if a user is working with a computer at this time
or not. The second way of obtaining events is the Control
UI, where users may set their goals manually. Such user goals
always override system’s decisions. E.g., the rules may say that
a temperature in a certain room may be as low as 19 degrees
Celcius, but if a user specifies that she wants the temperature
to be 22 degrees, the user command event will be generated
and sent to the RME. When such an event arrives, the RME
checks affected parts of the environment, and if any actions are
required, they are sent to the Orchestrator service for execution.

F. Orchestration

The Orchestrator service is responsible for the execution of
plans, generated by Composition services. Each orchestration
represents a sequence of actions that need to be performed over
the set of services that wrap physical devices. The actions are
abstracted as web-services, and the orchestrator makes sure
that they are correctly scheduled and executed at the proper
time, with the proper parameters. If any contention problem
is discovered, the plan is refused and a proper response is
returned to the calling module. The orchestration service is
synchronous, the plans are executed only if the devices are
free, and in case of problems it re-executes the invocation.
Each plan of actions is a tree of invocations, where the root
and intermediate nodes are combined activities, and leaves
represent atomic actions. Nodes can be nested in arbitrary
depth level that does not need to be defined in advance. The
orchestrator maps the abstract view in real time, with different
threads and synchronisation points used to respect the different
semantics of the activities. In smart environments devices can
be used for different purposes by several actors at the same
time. The concurrency manager module of the orchestrator is
responsible for the execution of concurrent plans, guaranteeing
that each resource is used at every moment by just one entity.
In order to handle more execution in parallel, the orchestration
engine is organized as a multi-thread server where each plan
is managed by an execution process thread. The service also
handles possible connection problems that can occur with
SAGW, and notifies users if a service is unreachable.



G. Distributed Configuration and Monitoring Service

Distributed Configuration Service (DCS) is responsible for
maintenance of information about the address, parameters,
and (if applicable) physical location of every system service
instance. Initially, when each instance starts as a service, it
sends the update to DCS which stores the information about
its location in a tree-like structure. Instances are grouped per
components and location information is represented in form of
endpoints (addresses) that point to specific instances.

DCS is represented as an Apache Zookeeper server that can
have several replicas. Clients are the services that represent
the instances of the system components. Each client service
is connected to a single DCS server. Clients maintain a TCP
connection through which they send requests to update the
information about their physical location, get the responses
which contain the physical location of other clients and
send heartbeats (used for Monitoring Service). If the TCP
connection to DCS server breaks, clients (system component
instances) can connect to a different DCS server (replica),
which contains the same information. This way fault tolerance
is achieved and there is no single point of failure.

The system also provides Monitoring Service to represent
the current state of each instance of system components and to
have more information on its performance. Monitoring Service
creates watchdogs for each service instance. As all its client
components send the heartbeats, it is possible to keep the
information in monitoring service refreshed.

H. Event Management service

The event management service (EMS) allows to filter
events so that other services process only those events, which
they are interested in. For example, in a sufficiently large
building, there are several instances of the rule maintenance
engine running, each responsible for a certain part of the
environment. After initialization, the service contacts the event
management system, and specifies the parameters of the events
it is interested in, which include hierarchical physical location,
type of services and devices, particular sub-system, such as
lighting or heating, or the type of events. In the Greener-
Buildings system the RabbitMQ messaging protocol is used
as an underlying messaging system for the event management
service. Due to the fact that events are handled in a unified
manner, the event management service allows the system to be
potentially extendable not only quantitatively, i.e. by adding
more locations or devices, but also in a functional way, i.e. by
adding new services to complement existing ones.

V. EVALUATION

A. The smart office

To evaluate the architecture an intelligent office was created
in the Potentiaal building in the Technical University of Eind-
hoven. Special care was taken to ensure that the office would
allow to assess and test the benefits of the architecture in a
real working environment. An office room and a meeting room
where chosen for tests. Fine-grained activity monitoring and
control are required in order to achieve energy saving[19]. The
Potentiaal building was constructed in the seventies, therefore
it had no centralized or automated building controls. To achieve

the levels of detection and actuation a localized upgrade was
done in the spaces chosen for the smart office. Lights where
changed from simple on/off to dimmable, but the fixtures
where kept intact. Also the coarse sectioning of the light
installation was redone to have zones that could better react to
the activities and had less lamps than the original sections.
In the Meeting room electrical blinds where installed and
the old radiator heating system was canceled for the room
and replaced by two portable HVAC units. Energy harvesting
wireless sensors and actuators were used whereever possible.
This overhaul costed around ten thousand euros for parts and
labor. In total the smart office keeps track of 113 sensor and
context variables and controls 29 actuators. This increase on
sensor density per room is necessary in order to achieve high
levels of energy saving while maintaining user comfort.

The GreenerBuildings architectures is designed to run over
tcp/ip protocol, this allows flexibility and easy deployment
while keeping cost down by avoiding special needs in commu-
nication hardware. The smart office network exists as a VPN
over the university network. Each room has a VPN enabled
router that connects to the smart offices’ VPN and at the same
time provides a local network for the room. This eliminates the
need of physically wiring a network between the two rooms
and the machines running the other GB components.

B. Performance Metrics and results

There are two groups of metric used to measure perfor-
mance of the architecture. The first group of metrics is aimed
to evaluate the performance of individual components, giving
an idea of scalability and robustness. The second group of
metrics is aimed to evaluate the architecture as a whole, here
the emphasis is in measuring the delay between detection to
actuation. For the individual performance tests the components
where evaluated as black boxes and simple machine resources
utilization metrics where used to evaluate the performance:
cpu, memory use, response time. The test methodology con-
sisted of injecting progressively more simulated simultaneous
requests until the amount reached the expected amount of
requests from the entire Potentiaal building. For example
Figure 2 shows the dependence of the CPU time on the number
of simultaneous events.

Fig. 2: RME CPU Time (seconds) per number of event calls.

The group test metrics focus on evaluating round trip tim-
ing and correlation. The round trip timing is measured as the



time it takes for the system to issue a command as a response
to a change in an activity or sensor. The test was done for
a general case scenario, where the components involved are:
SAGW (sensor) , context, rule maintenance, orchestration and
finally the SAGW (actuator). The selected device to measure
was on of the infrared motion detector sensor associated to
a desk presence activity. The desk presence triggers the turn
on over head lamp rule, in proportion to the desk light sensor
value. Finally the result is propagated to the orchestrator and
to the SAGW that executes the action. The average round trip
takes 0.34 seconds, with a variance of 0.0142.

The correlation metric determines how the system behaves
when different actions affect the same sensor. This was tested
on an office desk scenario, where the room lights and the desk
overhead light affect the amount of light on the desk. The
room light are set by a rule to be inversely proportional to
the exterior light and the over head lamp are set by a second
rule to provide enough light such that the desk light sensor
reaches 700 lux. Figure 3 shows an example where the system
compensates the effect of the room light with the overhead
light. As the exterior light decreases the room light increases
its value as a result the desk sensor stays constant. At on
point the sensor detects the increase of light over the desk
and the system immediately reacts by reducing the power of
the overhead lamp. Finally when the influence of exterior light
ceases completely the overhead light returns to full power.

Fig. 3: Correlation test results. Room light compensates for
the dwindling exterior light, and the overhead light reacts to
influence on the desk light sensor of exterior and room lights

VI. CONCLUSION

Today we already have the technology to make our build-
ings smart. Now it is the priority to combine all the pieces,
to create evolvable, portable, and easily adjustable middle-
ware frameworks, which can be installed in new buildings
and retrofitted to the old ones. In this paper we presented
the architecture for smart buildings which is based on SOA
principles. We showed, how different components may share
information to achieve a common goal of increasing the

comfort of a user. We showed, how the system, while becoming
more automated, can still keep the user in charge of the
environment. Our implementation of the smart office validated
the responsiveness, scalability, and evolvability of the system,
making it a viable choice for new BMS.

ACKNOWLEDGMENT

This work was kindly supported by the EU FP7 project
GreenerBuildings, contract no. 258888.

REFERENCES

[1] M. Aiello and S. Dustdar, “Are our homes ready for services? a domotic
infrastructure based on the web service stack,” Pervasive and Mobile
Computing, vol. 4, no. 4, pp. 506–525, 2008.

[2] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented middleware
for building context-aware services,” Journal of Network and computer
applications, vol. 28, no. 1, pp. 1–18, 2005.

[3] E. Curry, J. O’Donnell, E. Corry, S. Hasan, M. Keane, and S. O’Riain,
“Linking building data in the cloud: Integrating cross-domain building
data using linked data,” Advanced Engineering Informatics, 2012.

[4] V. Degeler and A. Lazovik, “Architecture Pattern for Context-Aware
Smart Environments,” in Creating Personal, Social and Urban Aware-
ness through Pervasive Computing. IGI Global, 2013, pp. 108–130.

[5] D. Cook and S. Das, “How smart are our environments? An updated
look at the state of the art,” Pervasive and Mobile Computing, vol. 3,
no. 2, pp. 53–73, 2007.

[6] T. A. Nguyen and M. Aiello, “Energy Intelligent Buildings based on
User Activity: A Survey,” Energy and Buildings, 2012.

[7] G. Youngblood, D. Cook, and L. Holder, “The MavHome Architecture,”
Comp. Sci. and Eng. Dept. Univ. of Texas at Arlington, Tech. Rep., 2004.

[8] J. Kusznir and D. Cook, “Designing lightweight software architectures
for smart environments,” in Intelligent Environments (IE), 2010 Sixth
International Conference on. IEEE, 2010, pp. 220–224.

[9] V. Callaghan, G. Clarke, M. Colley, H. Hagras, J. Chin, and F. Doctor,
“Inhabited intelligent environments,” BT Technology Journal, vol. 22,
no. 3, pp. 233–247, 2004.

[10] D. López-de Ipiña, A. Almeida, U. Aguilera, I. Larizgoitia, X. Laiseca,
P. Orduña, A. Barbier, and J. Vazquez, “Dynamic discovery and
semantic reasoning for next generation intelligent environments,” in Int.
Conf. on Intelligent Environments (IET), 2008, pp. 1–10.

[11] M. Aiello, F. Aloise, R. Baldoni, F. Cincotti, C. Guger, A. Lazovik,
M. Mecella, P. Pucci, J. Rinsma, G. Santucci et al., “Smart homes
to improve the quality of life for all,” in Int. Conf. of Engineering in
Medicine and Biology Society (EMBC). IEEE, 2011, pp. 1777–1780.

[12] M. Milenkovic and O. Amft, “Recognizing energy-related activities
using sensors commonly installed in office buildings,” in Int. Conf. Sus-
tainable Energy Information Technology. Elsevier, 2013, p. 669–677.

[13] P. Jaramillo and O. Amft, “Improving energy efficiency through activity-
aware control of office appliances using proximity sensing - a real-
life study,” in Int. Workshop on Smart Environments and Ambient
Intelligence (SEnAml). IEEE, 2013.

[14] L. I. L. Gonzalez, M. Troost, and O. Amft, “Using a thermopile matrix
sensor to recognize energy-related activities in offices,” in Sustainable
Energy Information Technology, Int.Conf. Elsevier, 2013, pp. 678–685.

[15] D. Bannach, P. Lukowicz, and O. Amft, “Rapid prototyping of activity
recognition applications,” Pervasive Computing, vol. 7, pp. 22–31, 2008.

[16] T. Moore, D. Carter, and A. Slater, “A field study of occupant controlled
lighting in offices,” Lighting Research and Technology, vol. 34, no. 3,
pp. 191–202, 2002.

[17] A. Williams, B. Atkinson, K. Garbesi, E. Page, and F. Rubinstein,
“Lighting controls in commercial buildings,” LEUKOS, vol. 8, no. 3,
pp. 161–180, 2012.

[18] V. Degeler and A. Lazovik, “Dynamic constraint reasoning in smart
environments,” in IEEE Int.Conf. Tools wth Artificial Intelligence, 2013.

[19] M. Milenkovic and O. Amft, “An opportunistic activity-sensing ap-
proach to save energy in office buildings,” in Int. Conf. on Future Energy
Systems (eEnergy), ACM. ACM, 2013, p. 247–258.


	Introduction
	Related Work
	System Overview
	Application services
	Sensors and Actuators Gateway
	Repository
	Context
	User Control
	Rule Maintenance Engine
	Orchestration
	Distributed Configuration and Monitoring Service
	Event Management service

	Evaluation
	The smart office
	Performance Metrics and results

	Conclusion
	References

