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Introduction 

The ability of pervasive systems to perceive the context of the surrounding environment and act 
accordingly proves to be an enormously powerful tool for raising immediate users' satisfaction and 
helping them to increase their own awareness and act in a more informed way. Therefore, recent years 
marked many smart environment solutions hitting the market and applying latest pervasive computing 
research advancements on an industrial scale.  

Magnitude of context-aware smart spaces applications is enormous: it stretches from telephones 
that redirect the call to the room where the recipient is currently located, e.g. the Active Badge system 
(Want, Hopper, Falcão, & Gibbons, 1992), and simple coffee machines with the possibility to schedule 
the time of coffee preparation exactly to the time when you wake up to whole building automation 
systems with complex rules of behavior and planning techniques that are just waiting for your wink to 
launch the complex artificial intelligence reasoning that will understand and fulfill your unvoiced 
demands.  

Going even further, smart environments matter not only on the Personal and the Social scale, but 
on the bigger Urban scale as well. Sometimes whole neighborhoods can be considered as smart spaces, as 
shown by many Smart Grid enabling projects (Georgievski, Degeler, Pagani, Nguyen, Lazovik, & Aiello, 
2012), (Capodieci, Pagani, Cabri, & Aiello, 2011). By introducing small scale energy generating 
facilities, such as wind turbines or solar panels, it is possible for individual buildings to produce more 
energy than they consume at certain points of time. To avoid losing this precious energy (which becomes 
even more precious considering its “green” sustainable origin), peer-to-peer-like energy transfer 
connections are introduced between buildings, with full featured automated negotiation techniques that 
enable one building to sell excessive energy to another neighboring building. First field-testing projects, 
such as PowerMatching City project in the Netherlands (Bliek, et al., 2010), which features 25 
interconnected households, show that not only such energy comes with a cheaper price, but also the 
“transfer overhead” is severely reduced, as now the average energy travel distance is much shorter. 

As can be seen, context-aware smart environments come in many different faces and on many 
different scales, but underlying idea remains the same: the system is aware of its context, i.e. the 
environment around, is able to act accordingly in an intelligent, predefined, learned, or automatically 
inferred way, and is able to communicate to its users, thus increasing their comfort and awareness level as 
well. Seng Loke in his book (Loke, 2006) defines the three main elements of the context-aware pervasive 
system: sensing, thinking, acting. 

In just a few years after the first introduction of smart environments, the topic became booming, 
and many projects both in research and in industry were dedicated specifically to advancements in this 
area. As happened in many other research fields where a big number of different research groups and 
industrial companies started to work separately on the same topic, in the context-aware environments area 
the problems that the groups face are to a large extent similar, and some of them were solved several 
times, sometimes in a similar manner. 



 

 

One of such problems, and an important one, is the high-level architecture design of smart 
context-aware systems. Since the beginning of the 2000s, many projects have been designing and 
implementing smart environment systems from scratch. However, when looking post-factum at the 
architectures of these systems, one can notice a lot of similarities among them. With the same basic 
structure, the biggest differences usually arise at the level of individual components, aimed to satisfy 
different end-level requirements.  

Naturally appeared the idea to unify the architecture design for such smart environments projects. 
Taking many successful and undergoing projects as case-studies, we tried to find the common structure, 
the common patterns, and in some sense the “best practices” that can help future projects to reduce the 
efforts spent on the general system frame, and redirect those efforts to more specific requirements that are 
unique in every project. The work of Preuveneers and Novais (Preuveneers & Novais, 2012) surveys 
similar efforts to find and study best practices on different levels of smart pervasive applications that were 
already done in previous studies, including requirements engineering, context modelling, development 
acceleration and code reuse. In this chapter, on the other hand, we focus on a pattern for architecture 
design of smart environment systems. 

We will introduce several layers of the architecture that inevitably exist in one form or another, 
and discuss the possible components that may be parts of these layers. We will then discuss the common 
information flows within such architecture and mention the most notable problems, such as scalability 
and fault tolerance. Finally, we will present several case studies, successful or undergoing smart building 
projects, and show that the presented pattern can be easily mapped to their architectures.  

Smart Environments 

During the last years a lot of projects were dedicated to intelligent buildings automation. Though 
in this chapter we do not aim to provide an exhaustive review of such projects and for more thorough 
surveys the reader can refer to (Cook & Das, 2007) and (Nguyen & Aiello, 2012), the history of the most 
influential smart environment projects can be presented as follows. 

It all started with the Active Badge (Want, Hopper, Falcão, & Gibbons, 1992) as early as in 1992. 
Though Active Badge most commonly cited as the beginning of the general context aware computing 
area, it can be seen that the main part of the project was concerned with making the environment 
(particularly, stationery phones) smarter. Thus Active Badge is as well the first project that was concerned 
with the smart environments, and implemented them. 

One of the earliest projects aimed at full building automation was MavHome (Youngblood, Cook, 
& Holder, 2004) (MavHome, 2003), which started in 2000. The project was oriented at discovering 
patterns of device usage and occupants’ behavior by utilizing different learning algorithms. The project 
produced a lot of datasets of activities, sensor data, etc., which were used to provide predictions on future 
usage.  The conclusion of the MavHome project was also a starting point for the currently ongoing 
successful CASAS Smart Home project by the same university (CASAS, 2008). 

iSpace, which started as iDorm in 2002 (Callaghan, Clarke, Colley, Hagras, Chin, & Doctor, 
2004) (iDorm, 2002), project features a room in a dormitory of the University of Essex (United Kingdom) 
campus fully equipped with sensors and actuators. The project uses full range of devices, featuring 
temperature, humidity, and light sensors, door locks, infrared sensors, video cameras, as well as HVAC 
system, motorized blinds, window openers, and light dimmers. The system can remember user's habits 
and automatically adjust its behavior accordingly, so that explicit requests for actions from the user can be 
minimized, unless, of course, the user changes his or her habits. 

The SmartLab Research Laboratory (López-de-Ipiña, et al., 2008) (SmartLab, 2006) was 
constructed in 2006 to create a model of interactions between people and the context aware environment 



 

 

that surrounds them. This laboratory is used in several research projects, including Assistive Display, 
ubiClassRoom, and Eldercare. 

The CASAS (Center for Advanced Studies in Adaptive Systems) Smart Home project (Kusznir & 
Cook, 2010) (CASAS, 2008) started in 2008 and has since produced a lot of publications both in 
academic press and in mass media. The smart environment for the project is a duplex apartment at the 
premises of the Washington State University. The apartment is equipped with a grid of sensors, including 
motion, temperature, power meter. The project heavily relies on Artificial Intelligence techniques such as 
Machine Learning in order to automatically recognize patterns of occupants behavior and automate the 
building to provide help and increase occupants' comfort. 

As a part of Smart Homes for All (SM4All) project (Aiello, et al., 2011) (SM4All, 2008), which 
also started in 2008, a smart apartment was constructed in Rome, Italy. The project implemented 
sophisticated AI planning techniques, which produce a set of actions to adapt the house to user’s needs in 
every possible situation.  The breakthrough of the project was the application of the Brain-Computer 
Interface, a great help for many disabled people, which features the ability to read brain impulses of a 
smart home user and transform them into a certain desire about the smart home state, which in turn can be 
transformed into a set of actions for smart home actuators. 

The e-Diana project (e-Diana, 2009) started in 2009 and was concerned with creation of a unified 
platform for all possible sub-systems of a smart building, such as security, lighting, power consumption, 
HVAC, etc. The project also aimed to improve energy consumption efficiency of such buildings and to 
provide better situation awareness for infrastructure owners. 

The GreenerBuildings project (GreenerBuildings, 2013) started in 2010 and implements the 
intelligent office, constructed on premises of the Technical University of Eindhoven, The Netherlands. 
The project features the ability of users to modify the rules of office’s behavior, which will then 
automatically adapt itself to their needs based on the context information. The project gives special 
attention to such issues of smart solutions as fault tolerance and scalability, which are essential for 
realization of smart solutions on a large scale, given hundreds of separate offices per building, or 
thousands of smart homes within a combined smart city. 

2010 is also the start year of the ThinkHome project (Reinisch, Kofler, & Kastner, 2010), aimed 
at optimization of the energy efficiency while maintaining user comfort. The project uses knowledge 
ontologies for reasoning about the home states, and plans to provide a comprehensive knowledge base for 
evaluation of control strategies based on relevant building data. 

There are also many specialized projects, for example EnPROVE (EnPROVE, 2013) or 
BeyWatch (Beywatch, 2008) that mostly deal with energy saving part of the smart environments, 
however, we mentioned here only some of the general broad-purpose context-aware smart environments. 

We now will go into details and introduce components that are common for such projects. 

Architecture Overview 

In this section we will present the design pattern of the smart environment architecture. The 
overview of the pattern is shown in Figure 1. We will show that the full architecture may be split into four 
layers, with several distinct components in every layer. Most component patterns arise from the 
architecture design similarities due to requirements that are common for all context-aware smart 
environments. It is important to note that components, which will be described below, are not exhaustive 
in terms of components' availability to the system. The components here are the backbone, but it is often 
the case that the actual implementation dictates for some support components, which either establish 
communication between other components, or act as watchdogs, proxies, monitors, etc. Also, if the 
system features a certain specific ability, such as a specific handling of heating mechanisms, or a special 
support for disabled users, more often than not this will require a separate component. Thus the system 



 

 

that is described in this chapter should be viewed as extendable, with the ability to plug-in more 
components, if needed. And, to the opposite, some presented components and flows are sometimes 
simplified, combined, or removed altogether in projects of smaller scale. This possibility will be 
highlighted at the level of components. 

The Physical layer contains all hardware parts of the system, which include all wired and wireless 
sensors, actuators, network layout, low-level protocols associated with them, etc. One of the main tasks of 
the Physical layer is to collect information about the environment and transfer it to higher layers. Low-
level protocols may be implemented to provide a common gateway, which allows to unify interfaces, hide 
the specific hardware differences, and/or reduce bandwidth requirements by bundling the information. 
The second main task of the Physical layer is to invoke actuators in the environment based on commands, 
sent from higher layers.      

Figure 1: Smart System Architecture Pattern 

 



 

 

 

The Ubiquitous layer acts as an intermediary to the system components, and has several distinct 
responsibilities. First of all, the layer contains system's data storage, which means it collects and stores all 
the current and historical information about the environment, system configuration, system capabilities, 
user preferences, etc. The layer also should contain an information processing component, capable of 
detecting simple sensor errors or faults, transform information from low-level sensor values to high-level 
logical state of the environment, etc. On the actuation side the Ubiquitous layer is responsible for 
transforming commands from the Reasoning layer to low-level commands that the Physical layer is 
capable to execute, and making sure they are passed to the Physical layer in a concurrent non-blocking 
way. 

The Reasoning layer is the layer where system's logic resides. It contains all components that are 
responsible for decisions on system's actions, be it a simple logic defined through strict if-then rules, or 
sophisticated AI techniques, such as planning or scheduling actions. The layer may also contain activity 
recognition or learning components, which should improve the automated system's response.     

The User layer presents information about the system to its users. It contains two main parts. The 
first one presents information about the environment, current user preferences, reasons for certain 
decisions that the system makes, and allows a user to modify the configuration of the system according to 
her or his needs, enter new rules of execution, or overrule system's decisions. The second part provides 
meta-information about the system itself, such as the status of all  components, whether they are working 
properly, statistics, resources consumption, etc.       

We will now describe each layer in details. 

Physical Layer 

The main part of the Physical layer is, as the name hints, physical, i.e. devices that are implanted 
in the environment. All groups that decide to implement a smart home environment face an unavoidable 
issue from the very beginning: the heterogeneity of the devices they plan to use. Even now, while some 
companies started to specialize on providing combined sets of sensors and actuators, there are still a lot of 
special devices tailored to a particular need with distinct and possibly proprietary interfaces and 
communication protocols. 

Thus it is essential to unify the interface and data gathering before sending the data further into 
the system. Not only such unification follows the famed low-coupling architecture principle, and makes it 
easy to add, remove, or change devices both individually, and as a whole type, but it also keeps all other 
parts of the system device-insensitive, so in its pure form the change of a device will not require a single 
line of code to be changed anywhere past the Physical layer. 

 Thus the essential part of the Physical layer is the Gateway, the component that initially collects 
data from devices and applies low-level transformation to it in order to send it further into the system in a 
uniform way. Note that the Gateway is highly hardware dependent, and will usually require changes in 
case of any changes of device types. 

Of course, conceptually some other parts can be also treated as physical devices, especially 
information-providing ones, such as person's agenda, a call event over VoIP, or some electronic message 
from outside the system. Often such events are initially processed and entered into the system from the 
“top”, i.e. from the User layer, or even via some other distinct entrance point, directly into the Ubiquitous 
or the Reasoning layer. But we argue that with a good level of abstraction, which a well-implemented 
Gateway provides, adding such events to the system from the “bottom”, i.e. from the Physical layer, is 
also a perfectly viable solution that serves well to the unification of the event processing and information 
flows. In this case such event generators are commonly viewed and regarded as virtual or logical sensors. 



 

 

 

Ubiquitous Layer 

The Ubiquitous layer is the backbone of the whole system, the main support of all other 
components. It also contains main channels of information flow and storage, and in some sense the layer 
connects and helps in the interpretation of two different worlds: the device-level Physical layer and the 
domain-abstracted Reasoning layer.  

There are several main components of the layer, and it is almost inevitable for all of them to be 
present in every smart environment system in one way or another. 

Knowledge Base 

We start with the Knowledge Base component. The database of the system belongs to this 
component, and for some systems the component will also be synonymous to the database. However, 
there is much more to it, first and foremost with respect to the types of information it handles. There are at 
least three types of information that are usually stored in the Knowledge Base, Figure 1 summarizes them. 

The first type is the static information about devices. This includes the types of devices the 
system has, their communication protocols, whether they are sensors or actuators, the structure of 
readings they provide or states they can be set into. For configurable devices it also contains the 
configuration information. Though the name “static” implies that the information does not change 
frequently, it is nevertheless possible that the information will change automatically in the course of 
system’s operation. For example, the SM4All smart home environment (Aiello, et al., 2011) provides the 
automatic device discovery feature.  

The second type of the Knowledge Base information is the dynamic one, and this represents the 
information that changes with high frequency, for example the current state of the environment, devices, 
or executed commands. Many systems prefer to send this type of information directly to relevant 
components (for example in the Reasoning layer) instead of sending them to the Knowledge Base and 
letting the Knowledge Base handle further distribution. This makes sense, since direct communication is 
also the fastest, and time of reaction is of utmost importance for the intelligent environment. However, the 
need for historical data collection is almost always a requirement, whether it is to update the training of a 
learning mechanism, to diagnose errors, or to show the history to a user. This means that even if the direct 
link for dynamic information transfer is outside the Knowledge Base, there should be a duplicate link 
which sends the data also to the Knowledge Base for storage and further retrieval and processing. 

Finally, the last type of information in the Knowledge Base is almost exclusively used by the 
Reasoning layer, as it contains all the information, required for high-level reasoning. The exact model of 
information here depends heavily on what kind of reasoning the system uses. For ontology-based systems 
such as ThinkHome (Reinisch, Kofler, & Kastner, 2010), this will be the ontology of the system and the 
environment. For rule-based behavior the reasoning rules will be stored. Training data and learning results 
will be present for all systems that use machine learning in one way or another. 

Context 

The next component of the Ubiquitous layer is the Context. The main task of the context is to 
transform low-level raw data gathered from devices into a higher-level information, usable by the 
Reasoning layer.  

One type of such processing is data packaging. Some sensors, for instance an acoustic sensor, 
send information with a very high frequency. It may be the case that the higher level components do not 
need such detailed information. Some simplified systems may only need to know, if there is a sound, or 
not, or the volume of sound, thus a lot of data transfers may be avoided by combining the information on 



 

 

the Context level and only sending the results higher into the system. Not only the bandwidth is saved, 
but also it removes the need for the Reasoning level to have a lower level representation of the device, 
and allows it to think in “domain-level” terms. Other examples include simple error filters that work 
nicely for such sensors as motion or light sensors, which for the most part send correct readings, but may 
occasionally send faulty ones. Such outliers are easily detectable by comparing them with neighboring 
readings.    

It should be pointed out here that the Context component in its pure form does not involve any 
kind of domain level reasoning, such as activity recognition. The Context instead must prepare the data 
for the high-level reasoning by abstracting some devices and transforming the data from other devices. As 
an example, let us take the presence detection. Though in its basic form it is a simple mapping with the 
motion sensor, the recognition of presence in the room already reasons and operates in domain level 
terms. To increase the sophistication level, other sensors may be used in later versions of the system in 
order to get better recognition rate (such as RFIDs on entering people, video stream, etc.). This will 
change trivial mapping into intricate reasoning system. Thus from the beginning such reasoning should be 
placed into the Activity Recognition component of the Reasoning level. 

Execution 

The Execution component is in some sense the exact opposite to the Context. The task of the 
Execution is to transform action goals received from the Reasoning layer into executable actions that can 
be sent to devices. An important addition to the task is also to oversee the correct execution of the 
commands by devices. 

It should be noted that the Execution in its pure form, as well as the Context, has absolutely no 
domain-level reasoning, i.e. it should not decide which command to execute out of several possibilities 
(any form of such reasoning belongs to the Reasoning layer). A good example is that the command to the 
Execution to “turn on a lamp” should also specify exactly, which lamp should be turned on in case there 
are several of them. If, on the other hand, the command is general, as in “turn on anything that provides 
light”, the Execution then also assumes some responsibilities of the Reasoning layer components as there 
may be several ways to satisfy the request (e.g. turning any one out of several available lamps in a room), 
and the Execution component must be able to choose one of these several available executions by using 
some criteria. On practice it still may be a viable solution, in order to reduce the complexity or simplify 
the architecture, but the system architect in this case should always be aware of this mixing of 
responsibilities, understand the reasons for them, and evaluate alternatives.  

Even with this being said, the Execution still has (and must have) some form of reasoning, on the 
level of particular devices. For example, it must be able to match the correct execution action with the 
desired end-state of the device. Also, if some command always involves actuation of several distinct 
devices in a uniform manner, such a command can be abstracted on the Reasoning layer to a single 
atomic action, and only inside the Execution component it will be transformed into a series of commands 
applicable to each device. 

Diagnosis 

Finally, the last component of the Ubiquitous layer is the Diagnosis component. This component 
is optional, i.e. some systems choose not to implement it explicitly, especially at the early stages of smart 
environment development. 

The task of the component is to monitor readings from sensors and execution results, check the 
correctness of the devices, and detect any anomalies, if possible. For example, many battery-powered 
devices tend to send erratic data when the battery is low. This may cause large problems at the reasoning 
level, if not detected earlier. 



 

 

The diagnosis may also have its counterpart at the reasoning level, which will use domain data 
together with the information from the Diagnosis to forbid the usage of faulty devices, until fixed, thus 
restricting the available domain. 

Reasoning Layer 

The Reasoning layer contains the domain-level logic of the system. This is the most diverse layer 
as well, as every smart environment project has its own ideas on how the environment should reason and 
make decisions about the actions it should perform.  

Over the years of context-aware systems research many different ways to model the domain-level 
information were devised, some general, some more specific to a particular task that the system was 
designed to solve. Among the most known high-level context representations are Resource Description 
Framework (RDF) (Lassila & Swick, 1998), W4 (Who, What, Where, When) Context Model (Castelli, 
Rosi, Mamei, & Zambonelli, 2006), RDF-based Web Ontology Language (OWL) (Antoniou & 
Harmelen, 2009), and Context Modelling Language (CML) (Bettini, et al., 2010). 

An extensive survey of different context representation models is presented in (Bettini, et al., 
2010). The choice of the exact context representation model influences heavily the capabilities for 
system's learning, activity recognition, and decision making, thus it is among the most important choices 
to be done during the early design of the smart environment system. 

We split this layer into three components, however, smart environment projects history shows 
that projects may have any combination of these components intertwined in many different ways. 

Learning 

The Learning component is responsible for automatic learning of the best possible decisions and 
actions based on input data, which can either be a real-time data, or previously gathered training data.  

The Learning component has a bit special place among all other components of the system. On 
the one hand, this component is optional, i.e. it is possible to construct a smart environment system 
without any learning incorporated, for example if it is a rule-based system. On the other hand, if the 
component exists, it takes one of the most important central places in the system. 

Machine learning methods are numerous: artificial neural networks, support vector machines, 
decision trees, genetic algorithms, reinforcement learning, different clustering techniques, etc. They all 
are applicable for usage in smart environment systems. 

Of course, when we speak about the learning capabilities of the system, usually it implies that the 
system has the ability to re-learn and re-train automatically when initial data changes, e.g. a user develops 
a new habit. However, there is also another possibility, a “semi-learning” system, so to say. In such a 
system the Learning component is not an integral part of the day-to-day system operation. Instead, the 
learning is performed using a standalone learning module at the beginning on some initial existing data, 
and results are entered to the system as unalterable rules. They are often represented by Bayesian 
networks or hidden Markov models. In such cases the Learning component may often be omitted from the 
operational architecture, as it indeed is not involved in the operational flows. When the need arises to 
relearn or retrain the system due to considerable changes in the outside world, the standalone learning 
module may be launched again, and the new operational rules will be entered to the system to replace the 
obsolete ones. 

Activity Recognition 

The Activity Recognition component does exactly what the name suggests: it gets the information 
about the current state from the Context, and applies internal knowledge to classify and define more high-



 

 

level information about the environment. For example, while the Context may send a reading from a 
motion sensor that there is motion in the room, the Activity Recognition will recognize that it corresponds 
to someone’s presence in the room. Given the stream of video from the Context, the Activity Recognition 
may define a whole set of the new domain-level information, such as whether a person is working with 
PC, thinking, eating, moving around, etc.  

Theoretically this component is not obligatory, as it is possible to make decisions directly based 
on the information from the Context.  However, without the Activity recognition the complexity of 
decisions is severely limited, as they lack a big part of high-level domain information. 

The activity recognition may include sound, video, or image recognition. Often it uses results 
obtained from the Learning component in order to classify and recognize the activity. Sometimes activity 
recognition may contain stricter definitions of what a certain activity means (such as a certain state of 
sensors will correspond to a certain activity), in which case the recognition itself checks the 
correspondence of the definition to the current state of environment. 

The results of the Activity Recognition component will go into the Decision Making component, 
where, combined with the information directly from the Context, they will depict the full knowledge 
about the current state, which in turn will be used to make decisions. 

Decision Making 

The Decision Making component is what turns the intelligent environment from a silent 
observant into a resolute actor: it decides, which actions should be performed in a given situation with a 
given knowledge. 

As with the Activity Recognition and the Learning components, the Decision Making component 
comes in many different forms, at least as many as there are fields in artificial intelligence and systems 
automation research areas. Some usable techniques include optimization theory, planning and scheduling, 
constraints satisfaction, search techniques, logical reasoning, ontological reasoning, reasoning under 
uncertainty, and many more. 

The important difference to note is that decision making may be split into two types: instant and 
continual. Instant decision does not mean instant execution. However, it means that the decision, once it is 
made and sent to the Execution component, cannot be revisited and changed. Instead, the new feedback 
from the environment (even if it is a feedback about errors in execution) goes to the “new cycle” of 
decision making, and requires new decisions to be made. The instant decision making is easier from 
architectural point of view, particularly it goes well with stateless components, because every new 
decision can be made independently from previous ones. 

However, sometimes instant decisions are not enough. Continual decision making usually 
involves several steps of execution within one decision. It also involves remembering the decision and 
revisiting it after receiving new feedback, possibly alternating some steps. Unlike instant decisions, 
continual ones usually require stateful components, thus are more demanding with respect to fault 
tolerance and general architectural cleanness. 

User Layer 

Though many projects opt not to give particular attention to interfacing with users, instead 
specifying UI as a part of some other architecture layer or component, we argue that it deserves a separate 
dedicated layer in the architecture.  

The User layer provides a view of the system to the user, and, which is even more important, it 
gives the ability to change and fine-tune the system, to debug errors, to override system's decisions and 
much more. 



 

 

In this section we will specify different parts of the system that require separate monitoring and 
control mechanisms.  

The first component of the layer is the environment information. This is a monitoring component, 
which receives its information from two sources: the Context and the Activity Recognition. First of all, 
the component provides an important hint to the user about the view of the environment within the 
system, as generally it may be different from the actual state of the environment. Causes of this may be 
numerous: an erroneous reading of the sensor, a mistake of the Activity Recognition, missing information 
due to hidden changes that are not detected, etc. If the view within the system differs from the actual 
environment state, the decision may be incorrect or not optimal as well. Thus it is important for a user to 
be able to see the view within the system in order to be able to compare it with the actual state. 

There is another important benefit of the environment information component: the increased 
user's awareness.  Many studies show (Weiss & Guinard, 2010) that just by increasing users' awareness 
about the amount of energy they consume at certain times and when using certain devices, it is possible to 
reduce the total energy consumption, because users are more likely to decrease their usage of heavy-
consuming devices. 

Second component of the User layer is the knowledge base information and update. The static 
information about devices, their configuration, possible actions, etc., is a great reference to a user about 
the capabilities of the system. Whether or not the component should provide the ability to update static 
information depends on the general architecture of the system, particularly on where the entry point of 
such information to the system is located. For example, if the system should be able to automatically 
detect and configure the device for work, it may be wiser to restrict the ability to tamper with the device 
parameters through the user layer. More often than not incorrect detection may highlight deeper problems 
or bugs with device detection, which should be fixed, instead of just concealed by the manual correction. 

The next component of the layer is the reasoning and decision making results. This information 
helps to understand the origins of system's actions, thus cannot be underestimated. It will show the 
reasons, why a particular decision was made by the system. For example, if the system decides to perform 
a certain action, this component will highlight, which rules exactly were activated. It is important to note 
that this includes information from all components of the Reasoning layer: the Decision Making, the 
Learning, and even the Activity Recognition. There is, however, no duplication of information with the 
environment information component, as the meaning of the information in these two cases is completely 
different. The environment information component must show the results of the activity recognition, in 
order to show, how the system perceives the state of the environment. The reasoning results component, 
however, explains how and why the decision was made. Therefore it will show in details, why the 
recognition algorithm classified the original information into exactly this activity, and not some other one. 
This knowledge will help the user to tweak the recognition algorithms if needed. 

Finally, the last component of the User layer is the system monitor. Contrary to all previous 
components, instead of showing the information about the domain and the environment, this component 
shows the information about the system itself: health status of all components, their performance 
indicator, any detected status changes and/or errors, etc. This also includes detected errors in devices, 
which may require user’s intervention in order to check if device is working properly or indeed needs to 
be changed or repaired. 

Operational Flows 

Intelligent building systems are reactive, i.e. their behavior is a direct consequence of the 
information they got from outside. There are three general operational flows within the system, and every 
flow corresponds to a single information entrance point.  



 

 

Of course, in our description it is assumed that all components are present in the system, which is 
not true for the general case, as many components are optional. If some component is missing, then every 
piece of information that should pass through the component is passed as it is (so we may assume that the 
transformation is the identity), and the component generates no new information. 

Environment-generated 

This flow is the most common one, as it starts with any registered change in the environment, and 
partially even with every new sensor reading. 

The sensor reading is generated on the Physical layer and is sent to the Common Gateway, where 
it is converted to a uniform format. From the Gateway the transformed reading goes to two places: to the 
Knowledge Base for storage and further retrieval as historical data, and to the Context for immediate 
processing. 

In the Context the reading is assessed and transformed from a raw reading data into a higher-level 
state. It may be the case that the reading corresponds to no changes in a state, in which case, depending on 
the system, the flow may either stop here (if further components are only interested in changes), or go 
further as usual. Either a state or a raw reading data (depending on the system) is also sent to the 
Diagnosis component, where it is checked for correctness. 

The state is further sent from the Context to the Reasoning layer, starting with the Activity 
Recognition component, where recognition is performed to generate domain level knowledge. Then it is 
sent to the Decision Making component, where it is combined with all other available information and the 
system decides, whether a certain action should be performed.  

In case there is a need for a certain action, the action is sent from the Reasoning layer to the 
Execution, where it is transformed to a set of device-level commands. And finally, those commands are 
sent to the Common Gateway in order to be distributed between the corresponding devices. They are also 
sent to the Diagnosis component for further checks. 

Of course, in parallel with the flow described above, the information is sent to the User layer to 
be displayed in a timely manner. As soon as the Knowledge Base receives the new state, it is reflected on 
the corresponding dashboard. The environment information dashboard shows the results of the Context 
and the Activity Recognition components, and the reasoning dashboard shows the decisions made. 

User-generated 

The alternative flow is the user-generated one. This flow starts when a user shows the desire to 
change something in the way the system currently operates.  For example, a user may override a certain 
decision, or change the priority of rules, or manually change a state of the environment, in case it was 
recognized incorrectly, etc.  

The flow starts from one of the informational components of the User layer. When a user enters 
the change, it is processed and is sent to the respective component. For a manual change of the 
environment it would be either the Context, or the Activity Recognition, for a rule change it will be the 
Reasoning component, for a decision override it will be either the Reasoning, or the Execution 
component, etc. From there the flow goes further normally. 

System-generated 

The first type of the system-generated flows concerns the normal system operation, for example, 
when executing scheduled events. In such a flow, on earlier stages a plan or a schedule has been 
generated that required certain actions to be performed in the future. In such a case the internal clock is 



 

 

set, and when the time comes, the action is automatically launched. The event usually starts from the 
Reasoning component, and goes further to the Execution normally. 

Another type of the system-generated flows concerns the re-learning and re-training mechanisms. 
Usually the Learning component is updated during the course of system’s operation, in order to 
correspond to changing conditions and requirements. Updating after every state change may be too 
cumbersome, especially for computationally expensive machine learning methods. Thus, re-learning 
happens either at some intervals of time or when a certain condition is met (such as a threshold for 
amount of changes is achieved). 

Additional Challenges 

For an intelligent environment that features a single room or a few rooms with no more than a 
couple of dozens of devices, the already described architecture will normally satisfy all demands of the 
architects and users combined. However, when a system becomes larger and grows to include several 
floors, a whole apartment or office building, or even several houses, new issues emerge that may render 
the intelligent environment almost nonoperational until properly solved.  

The scalability of the system is the first such issue. First of all, a single server's CPU or storage 
power will be quickly outgrown, thus for any more or less large system several servers is a requirement. 
Currently many efforts are spent in the area of database systems on development of distributed fault 
tolerant databases, such as Hadoop (White, 2012), MongoDB (Chodorow & Dirolf, 2010), Redis 
(Sanfilippo & Noordhuis, 2011), Cassandra (Lakshman & Malik, 2009), etc. Such databases make a good 
base for extendable intelligent environments, as they already solve distribution, data replication, fault 
tolerance, and availability problems out of the box. However, not only the Knowledge Base needs proper 
scalability.  The amount of sensor data grows with the number of devices as well, and at some point 
concurrency, queue processing speed and bandwidth issues may stop the system from further expansion. 
Thus it is also important to use proper solutions not only for data storage, but also for high-volume fast 
data processing. Such solutions as Twitter Storm (Twitter Storm, 2013) or RabbitMQ (Samovskiy, 2008) 
provide reliable ways for sending and processing large streams of data. 

The Reasoning layer, however, is the one that may suffer most from system's expansion. The 
reason is that most of the machine learning, search and reasoning algorithms within the layer may be 
computationally expensive, with at least exponential solving time. While the parallelization and 
distribution on several servers may partially alleviate the problem, sometimes more fundamental changes 
to the algorithm will be required. One of possible changes is the usage of approximate algorithms (for 
example, greedy algorithms, or genetic algorithms) instead of exact ones for the search optimization 
reasoning. Another possible change is the splitting of the system into several independent subsystems of 
smaller size, and applying the algorithms within subsystems. While with this approach some dependency 
between parts from different subsystems may be permanently lost, if the subsystems have only weak and 
not important dependencies between each other this may be a big improvement in terms of system's 
reaction time with only minor consequences in terms of the optimality of reasoning results. 

Another direct consequence of scaling the system onto several distributed servers is the need to 
increase the fault tolerance level. If the system works only in one room and on one server, crashes and 
other unrecoverable faults are rare and restarting the system is an unpleasant, but fast procedure that has 
overall light consequences. However, when servers become numerous, the rate of errors and crashes 
increases as well. The system should be designed in such a way that any single error will cause only a 
minor outage. So, for example, the system should be fully operational on fifth floor of the building even if 
the server that manages the second floor crashes. 

This may be achieved through addition of special system-level components, i.e. components that 
manage the system itself. Monitoring and configuration component may keep track of all running 



 

 

instances of components and their servers, check their health status through heartbeats, and keep track of 
their configuration. 

In case a component dies, the configuration component will automatically restart it either on the 
same server, or on a different one, and reconfigure other components so that now they contact a new 
instance. The configuration component may also perform load balancing and other utility tasks. As with 
databases and data streams, there are solutions that may come handy for such component implementation, 
such as Apache Zookeeper (Apache Zookeeper, 2010) or Doozer (Doozer, 2011). 

Case Studies 

Finally, in this section we want to showcase several smart environment projects as case studies 
and discuss, how their architecture maps to the general pattern, described in previous sections. Except for 
small differences, it can be seen that the general architectures of the presented projects have many things 
in common. These projects are chosen due to several factors. First of all, their focus is on creation of a 
fully featured general intelligent building, which influences all aspects of building's operations, as 
opposed to specifically targeted projects, such as those that aim to create a smart lighting system, or those 
that only target efficient system's infrastructure, etc. Secondly, all chosen projects have constructed, 
implemented and tested an actual real environment, thus the architectures of these projects have proved 
their feasibility and validity. And finally, they mostly feature clear distinction of architecture modules, as 
opposed to several smaller projects, where some modules can be seamlessly combined, or removed 
altogether, due to their reduced functionality. 

Even though the presented pattern is the most commonly used one for smart buildings, sometimes 
specific requirements may induce other constraints on the project and its architecture. For example, an 
emerging view of smart home architectures is viewing smart building environments as multi-agent. Cook 
in (Cook, 2009) defines four different directions in multi-agent research of smart environments: (a) multi-
intelligent software agents, (b) tracking multiple residents, (c) profiling multiple residents, (d) multi-agent 
negotiations. The first direction usually assumes viewing every module of the system as a separate agent, 
with communication protocols guiding interactions between them. Surprisingly, such a view of multi-
agent architecture can be very well combined with the pattern, presented here. In fact, in the same work 
Cook uses the MavHome project, which is one of our case studies as well, to describe how the agents can 
be organized in a hierarchical layered configuration. Other research directions view as agents either 
different people (in which case the smart system itself remains unified, but has to incorporate additional 
intelligence for distinguishing people), or different devices. In the latter case, especially if devices are 
highly mobile and autonomous, thus may be viewed as a complete system by themselves, the proposed 
pattern may be inapplicable or sub-optimal, and other agent based architectures may be explored, for 
example as described in (Spanoudakis & Moraitis, 2006). 

To avoid confusion, when referring to layers of respective projects and the layers of the 
architecture pattern, which is described in this chapter, we will refer to the former as “the project 
architecture”, and to the latter as “the pattern architecture”. 

MavHome 

Managing An Intelligent Versatile Home (MavHome) (Das, Cook, Battacharya, Heierman III, & 
Lin, 2002) project was one of the first scientific projects to create a functioning smart environment. The 
home system in the project acted as a rational agent, whose goal was to maximize comfort of its users and 
minimize costs of operation. The project used learning and prediction techniques heavily, to predict 
mobility patterns of the inhabitants and adapt to them in a timely manner. 

The architecture of the project as described in (Youngblood, Cook, & Holder, 2004) is shown in 
Figure 2. Here we will briefly compare it to the pattern in the Architecture section of this chapter. 



 

 

Figure 2: MavHome Architecture. Image source: (Youngblood, Cook, & 
Holder, 2004) 

 

 

The Physical layer of MavHome exactly maps to the Physical layer as described in the pattern: it 
contains devices and device interfaces to higher components, reminiscent of the Common Gateway. 

The Communication layer contains a lot of utility components that help to make the system 
operational, such as device drivers, operating system, proxies, and middleware. When comparing to the 
pattern, the Execution component is a part of this layer of MavHome. As we mentioned at the beginning 
of the Architecture Overview section, the implementation details are very specific to every system, so we 
avoid to include support components into the pattern, however they may very well be present in the high-
level architecture overviews of particular projects, as can be seen in the Middleware sub-layer of the 
MavHome project example, where they take an important place in the implementation. There is one thing 
to note, however, that all device and hardware related utility software, such as drivers, operating system, 
proxies, etc. may also be conceptually viewed as a part of the Physical layer of the pattern. 

The Information layer of MavHome contains aggregator, prediction, data mining and database 
services. It can be seen that it combines into a single layer parts of both the Ubiquitous and the Reasoning 
layers of the pattern. Namely, the Knowledge Base and the Context from the Ubiquitous layer, and the 
Learning and the Activity Recognition from the Reasoning layer.  

Finally, the Decision layer of the MavHome project corresponds to the Decision Making 
component of the pattern. 



 

It should be noted that in the MavHome archi
responsible for interfacing with user, even though such
actually exist. In case of their inclusion into the architecture picture, they may constitute the next l
similar to the User layer of the pattern.

SmartLab 

SmartLab is another project that 
al., 2008). The uniqueness of the project lies in the
middleware parts of the environment (the Physical and the 
common interfaces for other projects to use and to create their own reasoning on top of
layer of the pattern).The SmartLab environment was already
projects, including Assistive Display, ubiClassRoom,

The architecture of the project as described in

Figure 3: SmartLab Architecture. Image source: 
2008) 

 

The Sensing and Actuation layer contains all devices within the environment.
EIB/KNX bus for lightning, HVAC, presence, temperature and motors
VideoIP, Indoor Location System, etc. The next
functionality of the devices from the first layer into software services. Together
the Physical layer of the pattern, with the second layer representing

 

It should be noted that in the MavHome architecture there is no specific
responsible for interfacing with user, even though such interfaces (including mobile interface on PDA) 

inclusion into the architecture picture, they may constitute the next l
similar to the User layer of the pattern. 

SmartLab is another project that has created a functioning smart environment
. The uniqueness of the project lies in the fact that the project itself features hardware and 

environment (the Physical and the Ubiquitous layers in the pattern), with 
interfaces for other projects to use and to create their own reasoning on top of

n).The SmartLab environment was already used as a base for several other research 
projects, including Assistive Display, ubiClassRoom, and Eldercare. 

The architecture of the project as described in (López-de-Ipiña, et al., 2008)

SmartLab Architecture. Image source: (López-de

The Sensing and Actuation layer contains all devices within the environment.
HVAC, presence, temperature and motors on doors and windows, VoIP and 

VideoIP, Indoor Location System, etc. The next layer is the Service Abstraction layer, which transforms 
devices from the first layer into software services. Together these two layers

the Physical layer of the pattern, with the second layer representing the Common Gateway.

tecture there is no specific component or layer, 
interfaces (including mobile interface on PDA) 

inclusion into the architecture picture, they may constitute the next layer, 

environment (López-de-Ipiña, et 
ect itself features hardware and 

layers in the pattern), with 
interfaces for other projects to use and to create their own reasoning on top of it (the Reasoning 

used as a base for several other research 

Ipiña, et al., 2008) is shown in Figure 3.  

de-Ipiña, et al., 

 

The Sensing and Actuation layer contains all devices within the environment. They include 
on doors and windows, VoIP and 

layer is the Service Abstraction layer, which transforms 
these two layers represent 

the Common Gateway. 



 

The Semantic Context 
monitors the environment for activation and deactivati
Semantic Context Manager, which stores knowledge
Gateway Module, which produces
environment. This layer corresponds to the 
behaving as the Context component, the Semantic Context Manager behaving as static storage of the
Knowledge Base component, and the Web Gateway behaving as the Exec

Finally, the Programming, Management and Interaction layer provides
users of the SmartLab laboratory. The Environment
environment through a set of widgets, while the 
management of devices configuration, ontology, rule behavior, and tracking the system log and
As can be seen, the layer closely resembles the User layer of the

Note that there is no layer similar to the Reasoning layer. As we
provides capabilities for external programs to
own reasoning. Thus such external programs will represent the Reasoning layer,
the Semantic Context & Service Management layer provides all interfaces

Smart Homes for All 

Smart Homes for All (SM4All)
had created a smart apartment in Rome, Italy. The project featured several innovative ideas
environments, including usage of the Brain Computer Interface for
techniques for finding a set of actions for
to avoid concurrency issues when executing the commands.

Figure 4: SM4All Architectur

 

 

The Semantic Context & Service Management layer contains the Service Manager,
monitors the environment for activation and deactivation of devices thus for availability of services, the 
Semantic Context Manager, which stores knowledge about device in the common ontology, and the Web 
Gateway Module, which produces interfaces for third-party programs wishing to interact with the 

This layer corresponds to the Ubiquitous layer of the pattern, with the Service Manager 
component, the Semantic Context Manager behaving as static storage of the

Knowledge Base component, and the Web Gateway behaving as the Execution component.

Finally, the Programming, Management and Interaction layer provides 
users of the SmartLab laboratory. The Environment Controller allows a user to manually operate the 

widgets, while the Context Manager Front-End offers a web interface for 
configuration, ontology, rule behavior, and tracking the system log and

As can be seen, the layer closely resembles the User layer of the pattern. 

layer similar to the Reasoning layer. As we already mentioned, the project 
provides capabilities for external programs to use the environment and middleware while applying their 
own reasoning. Thus such external programs will represent the Reasoning layer,
the Semantic Context & Service Management layer provides all interfaces needed 

Smart Homes for All (SM4All) (Aiello, et al., 2011) was a European-wide 
created a smart apartment in Rome, Italy. The project featured several innovative ideas

environments, including usage of the Brain Computer Interface for issuing the commands, using planning 
et of actions for a complex commands, and sophisticated execution mechanisms 

issues when executing the commands. 

SM4All Architecture. Image source: (Aiello, et al., 2011)

& Service Management layer contains the Service Manager, which 
availability of services, the 

about device in the common ontology, and the Web 
party programs wishing to interact with the 

layer of the pattern, with the Service Manager 
component, the Semantic Context Manager behaving as static storage of the 

component. 

 web-based interface for 
Controller allows a user to manually operate the 

End offers a web interface for 
configuration, ontology, rule behavior, and tracking the system log and statistics. 

already mentioned, the project 
use the environment and middleware while applying their 

own reasoning. Thus such external programs will represent the Reasoning layer, when attached. Instead, 
needed for external programs. 

wide research project that 
created a smart apartment in Rome, Italy. The project featured several innovative ideas within smart 

issuing the commands, using planning 
a complex commands, and sophisticated execution mechanisms 

(Aiello, et al., 2011) 

 



 

 

The architecture of the project as described in (Aiello, et al., 2011) can be seen in Figure 4. 

There are three main layers. The Pervasive layer contains all devices and gives the possibility for 
devices to be added or removed dynamically through the usage of the common Universal Plug and Play 
(UPnP) protocol. As can be seen, the layer has the direct correspondence to the Physical layer of the 
pattern. 

The Composition layer contains five major components. The Repository represents the 
Knowledge Base component of the pattern, and contains a database, which includes registry of current 
devices and their abstract types, description of available services, and information about the layout of a 
house. The Context Awareness collects sensed data and represents the logical image of the environment, 
thus being the Context component of the pattern. Though there is no specific Activity Recognition 
component from the pattern included in the SM4All architecture, some parts of it are also included in the 
Context Awareness. The Orchestration component controls the execution, i.e. it invokes the physical 
services and receives feedback about the status of invocations. As such it corresponds to the Execution 
component of the pattern. The Rule Engine component contains rules of the environment behavior and 
constantly checks, based on information from the Context Awareness component, whether those rules are 
satisfied; if so, it invokes the Composition component, which applies AI planning techniques to create a 
set of actions which are sent to the Orchestration. The Rule Engine and the Composition combined 
constitute the Decision Making component of the pattern. 

The User layer provides access to the home system to its users. They may issue direct commands 
either through the touch interface or through the Brain Computer Interface. The User layer corresponds to 
the Reasoning results component of the User layer of the pattern. 

GreenerBuildings 

The GreenerBuildings project (GreenerBuildings, 2013) is the project that is dedicated to creation 
of smart offices in a green and energy-efficient way, while maintaining the high level of occupants' 
comfort. Occupants' behavior and activities are the key for adaptation to maximize the comfort, while 
choosing the most energy efficient state. The living lab setting is constructed on the premises of the 
Technical University of Eindhoven, the Netherlands. The project puts a lot of effort into the creation of a 
scalable, distributed, and fault tolerant solution. 

The architecture of the project is shown in Figure 5.  

The Physical layer of the project contains all devices connected to the Sensors and Actuators 
Gateway, which sends the values further into the system. As such the Physical layer of the project 
resembles closely the Physical layer of the pattern. Note that the project layer contains one more 
component: the Interconnection with Smart Grid. Since the project puts a lot of effort in energy saving, 
the Smart Grid component provides the energy consumption and energy costs information. It also 
provides prices of energy from different energy providers, so that it is possible to choose the best price 
and the best time of task executions when the prices are the cheapest. The Interconnection with Smart 
Grid is the component, specific to the implementation of the GreenerBuildings, so there is no such 
component in the pattern. However, since it provides information, as other devices do, it can be viewed as 
a part of the usual Physical layer subsystem. 

The Ubiquitous layer contains three main components: The Context, the Repository and the 
Orchestration, each having more subsystems within it. The Repository contains information about device 
types, device instances, and saves historical data for further retrieval. It corresponds to the Knowledge 
Base component of the pattern. The Context component collects information from sensors and transforms 
it into a consistent view of the environment. It also performs activity recognition, and as such it combines 
two components of the pattern: the Context and the Activity Recognition. The Orchestration performs 



 

 

execution of commands and also diagnoses errors on the Physical layer. Therefore it combines the 
Execution and the Diagnosis components of the pattern. 

Figure 5: GreenerBuildings Architecture. Image source: (GreenerBuildings, 
2013) 

 

 

The Composition layer contains two main components: the Control and the Composition 
component. The Composition component contains the reasoning of the system. The Rule Maintenance 
system within the component uses constraint satisfaction techniques to constantly check all rules that 
users have added to the system, and finds the state of the environment which satisfies all the rules. 
Planning component creates a set of actions to be executed by the Orchestration, and the CFD is the 
special system for optimal handling of the heating mechanisms and air quality within the rooms. Thus the 
Composition component is the Decision Making component of the pattern. 

The Control component is the main system interface to a user. It shows system’s parameters, and 
allows a user to issue direct commands or overrule decisions of the system. It also collects information 
about the users’ satisfaction levels. As such it partially corresponds to the User layer of the pattern. 

Conclusions 

As we showed in this chapter, nowadays there are a lot of different initiatives which aim to create 
smart automated environments. For many of them, the architecture of the system is the first challenge 
they face, and as we showed, independently constructed architectures of many project still share similar 
component ideas, as a result of the inevitable process of finding the best solution and the best system 
design.  



 

 

In the chapter we collected the knowledge, created by those projects, and combined it in order to 
describe a common architecture pattern. We showed, how existing project implementations resemble the 
pattern. We hope that this pattern will be of further use and helpful for many researchers and architects of 
the intelligent buildings in the future. 
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