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Introduction

The ability of pervasive systems to perceive thetext of the surrounding environment and act
accordingly proves to be an enormously powerfull foo raising immediate users' satisfaction and
helping them to increase their own awareness ahdhac more informed way. Therefore, recent years
marked many smart environment solutions hitting rireerket and applying latest pervasive computing
research advancements on an industrial scale.

Magnitude of context-aware smart spaces applicatiorenormous: it stretches from telephones
that redirect the call to the room where the regipis currently located, e.g. the Active Badgeeys
(Want, Hopper, Falcdo, & Gibbons, 1992), and singuffee machines with the possibility to schedule
the time of coffee preparation exactly to the timeen you wake up to whole building automation
systems with complex rules of behavior and plann@apniques that are just waiting for your wink to
launch the complex artificial intelligence reasanithat will understand and fulfill your unvoiced
demands.

Going even further, smart environments matter mbt on the Personal and the Social scale, but
on the bigger Urban scale as well. Sometimes wheighborhoods can be considered as smart spaces, as
shown by many Smart Grid enabling projects (Gewoslie Degeler, Pagani, Nguyen, Lazovik, & Aiello,
2012), (Capodieci, Pagani, Cabri, & Aiello, 201By introducing small scale energy generating
facilities, such as wind turbines or solar panglss possible for individual buildings to produogore
energy than they consume at certain points of tifeeavoid losing this precious energy (which beceme
even more precious considering its “green” sustdéeorigin), peer-to-peer-like energy transfer
connections are introduced between buildings, fithfeatured automated negotiation techniques that
enable one building to sell excessive energy tdremmeighboring building. First field-testing peojs,
such as PowerMatching City project in the Nethettar{Bliek, et al., 2010), which features 25
interconnected households, show that not only srargy comes with a cheaper price, but also the
“transfer overhead” is severely reduced, as novatlezage energy travel distance is much shorter.

As can be seen, context-aware smart environmem® ¢o many different faces and on many
different scales, but underlying idea remains themes the system is aware of its context, i.e. the
environment around, is able to act accordingly rinirgtelligent, predefined, learned, or automaticall
inferred way, and is able to communicate to itgsjghus increasing their comfort and awareness ke
well. Seng Loke in his book (Loke, 2006) defines three main elements of the context-aware per@asiv
system: sensing, thinking, acting.

In just a few years after the first introductionsmhart environments, the topic became booming,
and many projects both in research and in indusase dedicated specifically to advancements in this
area. As happened in many other research fieldsendiebig number of different research groups and
industrial companies started to work separatelthersame topic, in the context-aware environmengs a
the problems that the groups face are to a largenesimilar, and some of them were solved several
times, sometimes in a similar manner.



One of such problems, and an important one, ishilgh-level architecture design of smart
context-aware systems. Since the beginning of @02 many projects have been designing and
implementing smart environment systems from scratdbwever, when looking post-factum at the
architectures of these systems, one can notice af Isimilarities among them. With the same basic
structure, the biggest differences usually aris¢hatlevel of individual components, aimed to g$atis
different end-level requirements.

Naturally appeared the idea to unify the architectlesign for such smart environments projects.
Taking many successful and undergoing projectsaas-studies, we tried to find the common structure,
the common patterns, and in some sense the “bastiqes” that can help future projects to reduee th
efforts spent on the general system frame, andewdhose efforts to more specific requiremenas #ne
unique in every project. The work of Preuveneerd Biovais (Preuveneers & Novais, 2012) surveys
similar efforts to find and study best practicesdifferent levels of smart pervasive applicatidmattwere
already done in previous studies, including regquésts engineering, context modelling, development
acceleration and code reuse. In this chapter, erother hand, we focus on a pattern for architectur
design of smart environment systems.

We will introduce several layers of the architeettiat inevitably exist in one form or another,
and discuss the possible components that may e @gfathese layers. We will then discuss the common
information flows within such architecture and mentthe most notable problems, such as scalability
and fault tolerance. Finally, we will present seerase studies, successful or undergoing smaditgi
projects, and show that the presented pattern eaaily mapped to their architectures.

Smart Environments

During the last years a lot of projects were deditao intelligent buildings automation. Though
in this chapter we do not aim to provide an exha@gteview of such projects and for more thorough
surveys the reader can refer to (Cook & Das, 2@@d)(Nguyen & Aiello, 2012), the history of the mos
influential smart environment projects can be pnesz as follows.

It all started with the Active Badge (Want, Hoppealcéo, & Gibbons, 1992) as early as in 1992.
Though Active Badge most commonly cited as the rfo@gg of the general context aware computing
area, it can be seen that the main part of theegirojyas concerned with making the environment
(particularly, stationery phones) smarter. ThusvacBadge is as well the first project that wasaaned
with the smart environments, and implemented them.

One of the earliest projects aimed at full buildlngomation was MavHome (Youngblood, Cook,
& Holder, 2004) (MavHome, 2003), which started i@0Q. The project was oriented at discovering
patterns of device usage and occupants’ behaviartibging different learning algorithms. The profe
produced a lot of datasets of activities, sensta,ddc., which were used to provide predictionsutare
usage. The conclusion of the MavHome project wae a starting point for the currently ongoing
successful CASAS Smart Home project by the sameetsity (CASAS, 2008).

iSpace, which started as iDorm in 2002 (Callagt@iarke, Colley, Hagras, Chin, & Doctor,
2004) (iDorm, 2002), project features a room iroendtory of the University of Essex (United Kingdpm
campus fully equipped with sensors and actuatohe project uses full range of devices, featuring
temperature, humidity, and light sensors, doordodkfrared sensors, video cameras, as well as HVAC
system, motorized blinds, window openers, and ldjhimers. The system can remember user's habits
and automatically adjust its behavior accordingtythat explicit requests for actions from the wser be
minimized, unless, of course, the user changesrtier habits.

The SmartLab Research Laboratory (Lépez-de-Ipiftaale 2008) (SmartLab, 2006) was
constructed in 2006 to create a model of interastioetween people and the context aware environment



that surrounds them. This laboratory is used iresdwesearch projects, including Assistive Display
ubiClassRoom, and Eldercare.

The CASAS (Center for Advanced Studies in Adap8ystems) Smart Home project (Kusznir &
Cook, 2010) (CASAS, 2008) started in 2008 and hasesproduced a lot of publications both in
academic press and in mass media. The smart emartnfor the project is a duplex apartment at the
premises of the Washington State University. Thatagent is equipped with a grid of sensors, incigdi
motion, temperature, power meter. The project eagiies on Artificial Intelligence techniques $uas
Machine Learning in order to automatically recognpatterns of occupants behavior and automate the
building to provide help and increase occupantsifod.

As a part of Smart Homes for All (SM4All) projectiéllo, et al., 2011) (SM4AIl, 2008), which
also started in 2008, a smart apartment was casttuin Rome, Italy. The project implemented
sophisticated Al planning techniques, which prodaset of actions to adapt the house to user’ssnieed
every possible situation. The breakthrough of phaiect was the application of the Brain-Computer
Interface, a great help for many disabled peoplichvfeatures the ability to read brain impulsesaof
smart home user and transform them into a ceresirelabout the smart home state, which in turrbean
transformed into a set of actions for smart honteadors.

The e-Diana project (e-Diana, 2009) started in 28@® was concerned with creation of a unified
platform for all possible sub-systems of a smailding, such as security, lighting, power consurmmpti
HVAC, etc. The project also aimed to improve enecgpsumption efficiency of such buildings and to
provide better situation awareness for infrastmectwners.

The GreenerBuildings project (GreenerBuildings, 30&tarted in 2010 and implements the
intelligent office, constructed on premises of fechnical University of Eindhoven, The Netherlands.
The project features the ability of users to modifie rules of office’s behavior, which will then
automatically adapt itself to their needs basedthmn context information. The project gives special
attention to such issues of smart solutions ag faldrance and scalability, which are essential fo
realization of smart solutions on a large scaleemihundreds of separate offices per building, or
thousands of smart homes within a combined smisrt ci

2010 is also the start year of the ThinkHome ptajBeinisch, Kofler, & Kastner, 2010), aimed
at optimization of the energy efficiency while nmaiiming user comfort. The project uses knowledge
ontologies for reasoning about the home statespkamd to provide a comprehensive knowledge base fo
evaluation of control strategies based on relelaiitling data.

There are also many specialized projects, for elanfnPROVE (EnPROVE, 2013) or
BeyWatch (Beywatch, 2008) that mostly deal with rggesaving part of the smart environments,
however, we mentioned here only some of the geheoald-purpose context-aware smart environments.

We now will go into details and introduce composethiat are common for such projects.

Architecture Overview

In this section we will present the design pattefrthe smart environment architecture. The
overview of the pattern is shown in Figure 1. W# show that the full architecture may be spliifiour
layers, with several distinct components in eveayel. Most component patterns arise from the
architecture design similarities due to requirermetitat are common for all context-aware smart
environments. It is important to note that compdsewhich will be described below, are not exhassti
in terms of components' availability to the systdiine components here are the backbone, but ités of
the case that the actual implementation dictatessdéone support components, which either establish
communication between other components, or act atshdogs, proxies, monitors, etc. Also, if the
system features a certain specific ability, such apecific handling of heating mechanisms, orexisp
support for disabled users, more often than nat Wil require a separate component. Thus the syste



that is described in this chapter should be viewsdextendable, with the ability to plug-in more
components, if needed. And, to the opposite, somesepted components and flows are sometimes
simplified, combined, or removed altogether in pot§ of smaller scale. This possibility will be
highlighted at the level of components.

The Physical layer contains all hardware parthefdystem, which include all wired and wireless
sensors, actuators, network layout, low-level prok® associated with them, etc. One of the maiksta$
the Physical layer is to collect information abthe environment and transfer it to higher layemswi
level protocols may be implemented to provide amam gateway, which allows to unify interfaces, hide
the specific hardware differences, and/or redugealth requirements by bundling the information.
The second main task of the Physical layer is¥oke actuators in the environment based on commands
sent from higher layers.

Figure 1: Smart System Architecture Pattern
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The Ubiquitous layer acts as an intermediary tosystem components, and has several distinct
responsibilities. First of all, the layer contagystem's data storage, which means it collectssds all
the current and historical information about theiemment, system configuration, system capabditie
user preferences, etc. The layer also should comtaiinformation processing component, capable of
detecting simple sensor errors or faults, transfiofiormation from low-level sensor values to higivel
logical state of the environment, etc. On the danaside the Ubiquitous layer is responsible for
transforming commands from the Reasoning layerote-level commands that the Physical layer is
capable to execute, and making sure they are pasgbeé Physical layer in a concurrent non-blocking
way.

The Reasoning layer is the layer where systemis tegides. It contains all components that are
responsible for decisions on system's actionst hesimple logic defined through strict if-thenesl or
sophisticated Al techniques, such as planning bedualing actions. The layer may also contain agtivi
recognition or learning components, which shouldrione the automated system's response.

The User layer presents information about the systeits users. It contains two main parts. The
first one presents information about the environthemrrent user preferences, reasons for certain
decisions that the system makes, and allows ataseodify the configuration of the system accordiog
her or his needs, enter new rules of executiomverrule system's decisions. The second part pesvid
meta-information about the system itself, suchhasstatus of all components, whether they are iwgrk
properly, statistics, resources consumption, etc.

We will now describe each layer in details.

Physical Layer

The main part of the Physical layer is, as the nhmts, physical, i.e. devices that are implanted
in the environment. All groups that decide to inmpéat a smart home environment face an unavoidable
issue from the very beginning: the heterogeneitthefdevices they plan to use. Even now, while some
companies started to specialize on providing costbiets of sensors and actuators, there are Hiilloa
special devices tailored to a particular need wdthtinct and possibly proprietary interfaces and
communication protocols.

Thus it is essential to unify the interface andadgdthering before sending the data further into
the system. Not only such unification follows tlaeed low-coupling architecture principle, and makes
easy to add, remove, or change devices both inghlli and as a whole type, but it also keeps thikio
parts of the system device-insensitive, so initedorm the change of a device will not requirgragle
line of code to be changed anywhere past the Ridylaiger.

Thus the essential part of the Physical layehés@ateway, the component that initially collects
data from devices and applies low-level transforomato it in order to send it further into the ®ystin a
uniform way. Note that the Gateway is highly hardevdependent, and will usually require changes in
case of any changes of device types.

Of course, conceptually some other parts can be taésated as physical devices, especially
information-providing ones, such as person's agemdall event over VolP, or some electronic messag
from outside the system. Often such events ariligipprocessed and entered into the system fram th
“top”, i.e. from the User layer, or even via sontker distinct entrance point, directly into the gilitous
or the Reasoning layer. But we argue that with adgevel of abstraction, which a well-implemented
Gateway provides, adding such events to the syft@m the “bottom”, i.e. from the Physical layer, is
also a perfectly viable solution that serves welihte unification of the event processing and imf@tion
flows. In this case such event generators are cortywiewed and regarded as virtual or logical senso



Ubiquitous Layer

The Ubiquitous layer is the backbone of the whoystesm, the main support of all other
components. It also contains main channels of inédion flow and storage, and in some sense the laye
connects and helps in the interpretation of twéedéint worlds: the device-level Physical layer &inel
domain-abstracted Reasoning layer.

There are several main components of the layerjtasdalmost inevitable for all of them to be
present in every smart environment system in ongoxanother.

Knowledge Base

We start with the Knowledge Base component. Thaliate of the system belongs to this
component, and for some systems the componentalsitl be synonymous to the database. However,
there is much more to it, first and foremost wigspect to the types of information it handles. e at
least three types of information that are usuablyesl in the Knowledge Base, Figure 1 summarizesith

The first type is the static information about ded. This includes the types of devices the
system has, their communication protocols, whethely are sensors or actuators, the structure of
readings they provide or states they can be set Wor configurable devices it also contains the
configuration information. Though the name “statictiplies that the information does not change
frequently, it is nevertheless possible that therination will change automatically in the courske o
system’s operation. For example, the SM4All smarhé environment (Aiello, et al., 2011) provides the
automatic device discovery feature.

The second type of the Knowledge Base informatsothé dynamic one, and this represents the
information that changes with high frequency, fearmple the current state of the environment, dayice
or executed commands. Many systems prefer to dseisdtype of information directly to relevant
components (for example in the Reasoning layeteats of sending them to the Knowledge Base and
letting the Knowledge Base handle further distiitiut This makes sense, since direct communicagsion i
also the fastest, and time of reaction is of utnmagbrtance for the intelligent environment. Howetee
need for historical data collection is almost algvayrequirement, whether it is to update the tngimif a
learning mechanism, to diagnose errors, or to ghevhistory to a user. This means that even ifithect
link for dynamic information transfer is outsideetinowledge Base, there should be a duplicate link
which sends the data also to the Knowledge Basstdoage and further retrieval and processing.

Finally, the last type of information in the Knowlge Base is almost exclusively used by the
Reasoning layer, as it contains all the informati@quired for high-level reasoning. The exact nhade
information here depends heavily on what kind esmning the system uses. For ontology-based systems
such as ThinkHome (Reinisch, Kofler, & Kastner, @Q%his will be the ontology of the system and the
environment. For rule-based behavior the reasonileg will be stored. Training data and learninguits
will be present for all systems that use machiaenlieg in one way or another.

Context

The next component of the Ubiquitous layer is tlent€xt. The main task of the context is to
transform low-level raw data gathered from devige® a higher-level information, usable by the
Reasoning layer.

One type of such processing is data packaging. Smnsors, for instance an acoustic sensor,
send information with a very high frequency. It mzgy/the case that the higher level components tdo no
need such detailed information. Some simplifiedeaps may only need to know, if there is a sound, or
not, or the volume of sound, thus a lot of datagfers may be avoided by combining the informatian



the Context level and only sending the results drighto the system. Not only the bandwidth is saved
but also it removes the need for the Reasoning teveave a lower level representation of the devic
and allows it to think in “domain-level” terms. @hexamples include simple error filters that work
nicely for such sensors as motion or light sensehéch for the most part send correct readings,niay
occasionally send faulty ones. Such outliers astlyedetectable by comparing them with neighboring
readings.

It should be pointed out here that the Context camapt in its pure form does not involve any
kind of domain level reasoning, such as activityognition. The Context instead must prepare tha dat
for the high-level reasoning by abstracting soméads and transforming the data from other deviéss.
an example, let us take the presence detectiorughhim its basic form it is a simple mapping wikie t
motion sensor, the recognition of presence in tmr already reasons and operates in domain level
terms. To increase the sophistication level, odersors may be used in later versions of the system
order to get better recognition rate (such as RFdBsentering people, video stream, etc.). This will
change trivial mapping into intricate reasoningisys Thus from the beginning such reasoning shoeld
placed into the Activity Recognition componentloé Reasoning level.

Execution

The Execution component is in some sense the @mmisite to the Context. The task of the
Execution is to transform action goals receivedrfithe Reasoning layer into executable actionsdhat
be sent to devices. An important addition to thektes also to oversee the correct execution of the
commands by devices.

It should be noted that the Execution in its purenf, as well as the Context, has absolutely no
domain-level reasoning, i.e. it should not decidécw command to execute out of several possilslitie
(any form of such reasoning belongs to the Reagdaier). A good example is that the command to the
Execution to “turn on a lamp” should also specikaetly, which lamp should be turned on in casegher
are several of them. If, on the other hand, themamd is general, as in “turn on anything that pesi
light”, the Execution then also assumes some respitities of the Reasoning layer components asethe
may be several ways to satisfy the request (erginiy any one out of several available lamps inam),
and the Execution component must be able to chowsef these several available executions by using
some criteria. On practice it still may be a viatdution, in order to reduce the complexity or iifiy
the architecture, but the system architect in tase should always be aware of this mixing of
responsibilities, understand the reasons for tla,evaluate alternatives.

Even with this being said, the Execution still [fasd must have) some form of reasoning, on the
level of particular devices. For example, it mustdble to match the correct execution action with t
desired end-state of the device. Also, if some camimalways involves actuation of several distinct
devices in a uniform manner, such a command caabs&acted on the Reasoning layer to a single
atomic action, and only inside the Execution congmatrit will be transformed into a series of comnsand
applicable to each device.

Diagnosis

Finally, the last component of the Ubiquitous laigethe Diagnosis component. This component
is optional, i.e. some systems choose not to imeirit explicitly, especially at the early stagésimart
environment development.

The task of the component is to monitor readingsfsensors and execution results, check the
correctness of the devices, and detect any ananalipossible. For example, many battery-powered
devices tend to send erratic data when the batdoy. This may cause large problems at the réagon
level, if not detected earlier.



The diagnosis may also have its counterpart atehsoning level, which will use domain data
together with the information from the Diagnosisfaobid the usage of faulty devices, until fixedus
restricting the available domain.

Reasoning Layer

The Reasoning layer contains the domain-level lo§ithe system. This is the most diverse layer
as well, as every smart environment project hasvits ideas on how the environment should reason and
make decisions about the actions it should perform.

Over the years of context-aware systems researoly ditierent ways to model the domain-level
information were devised, some general, some mpeeific to a particular task that the system was
designed to solve. Among the most known high-l@atext representations are Resource Description
Framework (RDF) (Lassila & Swick, 1998), W4 (Whohw, Where, When) Context Model (Castelli,
Rosi, Mamei, & Zambonelli, 2006), RDF-based Web dlogy Language (OWL) (Antoniou &
Harmelen, 2009), and Context Modelling Language (E{Bettini, et al., 2010).

An extensive survey of different context represtmmamodels is presented in (Bettini, et al.,
2010). The choice of the exact context represematnodel influences heavily the capabilities for
system's learning, activity recognition, and deciginaking, thus it is among the most important cb®i
to be done during the early design of the smarirenment system.

We split this layer into three components, howesanart environment projects history shows
that projects may have any combination of thesepom@nts intertwined in many different ways.

Learning

The Learning component is responsible for automaticning of the best possible decisions and
actions based on input data, which can eitherrealaime data, or previously gathered trainingadat

The Learning component has a bit special place grnatimother components of the system. On
the one hand, this component is optional, i.esipassible to construct a smart environment system
without any learning incorporated, for exampletiis a rule-based system. On the other hand, if the
component exists, it takes one of the most impbdantral places in the system.

Machine learning methods are numerous: artificediral networks, support vector machines,
decision trees, genetic algorithms, reinforcemeatring, different clustering techniques, etc. Th#y
are applicable for usage in smart environment syste

Of course, when we speak about the learning capedibf the system, usually it implies that the
system has the ability to re-learn and re-traimmuattically when initial data changes, e.g. a ussetbps
a new habit. However, there is also another pdigiba “semi-learning” system, so to say. In suth
system the Learning component is not an integrel gfathe day-to-day system operation. Instead, the
learning is performed using a standalone learniodute at the beginning on some initial existingaglat
and results are entered to the system as unabkeralds. They are often represented by Bayesian
networks or hidden Markov models. In such case&daening component may often be omitted from the
operational architecture, as it indeed is not inedlin the operational flows. When the need arises
relearn or retrain the system due to consideradages in the outside world, the standalone legrnin
module may be launched again, and the new opeghtioles will be entered to the system to replaee t
obsolete ones.

Activity Recognition

The Activity Recognition component does exactly i@ name suggests: it gets the information
about the current state from the Context, and agjititernal knowledge to classify and define magh-h



level information about the environment. For exaamplhile the Context may send a reading from a
motion sensor that there is motion in the room Abtvity Recognition will recognize that it corqgends

to someone’s presence in the room. Given the stanaeo from the Context, the Activity Recognitio
may define a whole set of the new domain-levelrimfation, such as whether a person is working with
PC, thinking, eating, moving around, etc.

Theoretically this component is not obligatory,itais possible to make decisions directly based
on the information from the Context. However, with the Activity recognition the complexity of
decisions is severely limited, as they lack a tag pf high-level domain information.

The activity recognition may include sound, video,image recognition. Often it uses results
obtained from the Learning component in order &ssify and recognize the activity. Sometimes agtivi
recognition may contain stricter definitions of whacertain activity means (such as a certain sihte
sensors will correspond to a certain activity), which case the recognition itself checks the
correspondence of the definition to the currertestd environment.

The results of the Activity Recognition componeiill go into the Decision Making component,
where, combined with the information directly fraime Context, they will depict the full knowledge
about the current state, which in turn will be usedhake decisions.

Decision Making

The Decision Making component is what turns theeliigient environment from a silent
observant into a resolute actor: it decides, wihictions should be performed in a given situatioti \ai
given knowledge.

As with the Activity Recognition and the Learningngponents, the Decision Making component
comes in many different forms, at least as manthase are fields in artificial intelligence and t®yas
automation research areas. Some usable technigledé optimization theory, planning and schedyling
constraints satisfaction, search techniques, lbgieasoning, ontological reasoning, reasoning under
uncertainty, and many more.

The important difference to note is that decisicaking may be split into two types: instant and
continual. Instant decision does not mean instaat@ion. However, it means that the decision, dnise
made and sent to the Execution component, cannmigited and changed. Instead, the new feedback
from the environment (even if it is a feedback abewors in execution) goes to the “new cycle” of
decision making, and requires new decisions to bdemThe instant decision making is easier from
architectural point of view, particularly it goesellvwith stateless components, because every new
decision can be made independently from previogs.on

However, sometimes instant decisions are not eno@gmtinual decision making usually
involves several steps of execution within one sleni It also involves remembering the decision and
revisiting it after receiving new feedback, posgiblternating some steps. Unlike instant decisions,
continual ones usually require stateful componetitas are more demanding with respect to fault
tolerance and general architectural cleanness.

User Layer

Though many projects opt not to give particulaerion to interfacing with users, instead
specifying Ul as a part of some other architeclaiyer or component, we argue that it deserves aratp
dedicated layer in the architecture.

The User layer provides a view of the system touber, and, which is even more important, it
gives the ability to change and fine-tune the systi® debug errors, to override system's decisambs
much more.



In this section we will specify different parts thie system that require separate monitoring and
control mechanisms.

The first component of the layer is the environmafdrmation. This is a monitoring component,
which receives its information from two sourcese tBontext and the Activity Recognition. First of, al
the component provides an important hint to ther edmut the view of the environment within the
system, as generally it may be different from theual state of the environment. Causes of this beay
numerous: an erroneous reading of the sensor,takmisf the Activity Recognition, missing informarti
due to hidden changes that are not detected, fetice lview within the system differs from the adtua
environment state, the decision may be incorrectobroptimal as well. Thus it is important for aeuso
be able to see the view within the system in otddre able to compare it with the actual state.

There is another important benefit of the environmi@formation component: the increased
user's awareness. Many studies show (Weiss & @&1)i2®10) that just by increasing users' awareness
about the amount of energy they consume at ceita@s and when using certain devices, it is posgibl
reduce the total energy consumption, because asersnore likely to decrease their usage of heavy-
consuming devices.

Second component of the User layer is the knowldsitge information and update. The static
information about devices, their configuration, sibke actions, etc., is a great reference to a alseut
the capabilities of the system. Whether or notabmponent should provide the ability to updateicstat
information depends on the general architecturthefsystem, particularly on where the entry point o
such information to the system is located. For gdamif the system should be able to automatically
detect and configure the device for work, it maywiser to restrict the ability to tamper with thevite
parameters through the user layer. More often tidrincorrect detection may highlight deeper proisde
or bugs with device detection, which should bedixestead of just concealed by the manual cooecti

The next component of the layer is the reasonirydatision making results. This information
helps to understand the origins of system's actitmss cannot be underestimated. It will show the
reasons, why a particular decision was made bgybem. For example, if the system decides to parfo
a certain action, this component will highlight, iath rules exactly were activated. It is importamnbte
that this includes information from all componenfsthe Reasoning layer: the Decision Making, the
Learning, and even the Activity Recognition. Thexghowever, no duplication of information with the
environment information component, as the meanirip® information in these two cases is completely
different. The environment information componentsinshow the results of the activity recognition, in
order to show, how the system perceives the sfateecenvironment. The reasoning results component,
however, explains how and why the decision was materefore it will show in details, why the
recognition algorithm classified the original infiaaition into exactly this activity, and not someestbne.
This knowledge will help the user to tweak the gggtion algorithms if needed.

Finally, the last component of the User layer i8 #ystem monitor. Contrary to all previous
components, instead of showing the information &lttoel domain and the environment, this component
shows the information about the system itself: theatatus of all components, their performance
indicator, any detected status changes and/orserebe. This also includes detected errors in @syic
which may require user’s intervention in order beck if device is working properly or indeed netals
be changed or repaired.

Operational Flows

Intelligent building systems are reactive, i.e.ithgehavior is a direct consequence of the
information they got from outside. There are thgeaeral operational flows within the system, anergv
flow corresponds to a single information entrancep



Of course, in our description it is assumed thiat@hponents are present in the system, which is
not true for the general case, as many componeaispional. If some component is missing, themgve
piece of information that should pass through thamonent is passed as it is (so we may assuménthat
transformation is the identity), and the comporgerterates no new information.

Environment-generated

This flow is the most common one, as it starts \&itly registered change in the environment, and
partially even with every new sensor reading.

The sensor reading is generated on the Physical &md is sent to the Common Gateway, where
it is converted to a uniform format. From the Gagwhe transformed reading goes to two placeido t
Knowledge Base for storage and further retrievahiatorical data, and to the Context for immediate
processing.

In the Context the reading is assessed and transtbfrom a raw reading data into a higher-level
state. It may be the case that the reading comelsptm no changes in a state, in which case, demgod
the system, the flow may either stop here (if fartbomponents are only interested in changes)por g
further as usual. Either a state or a raw readiaqx ddepending on the system) is also sent to the
Diagnosis component, where it is checked for coness.

The state is further sent from the Context to tlead®ning layer, starting with the Activity
Recognition component, where recognition is perfmirto generate domain level knowledge. Then it is
sent to the Decision Making component, where @isibined with all other available information ahe t
system decides, whether a certain action shoufpkfermed.

In case there is a need for a certain action, ttierais sent from the Reasoning layer to the
Execution, where it is transformed to a set of dedevel commands. And finally, those commands are
sent to the Common Gateway in order to be distithlietween the corresponding devices. They are also
sent to the Diagnosis component for further checks.

Of course, in parallel with the flow described abothe information is sent to the User layer to
be displayed in a timely manner. As soon as theveiige Base receives the new state, it is refleated
the corresponding dashboard. The environment irdtion dashboard shows the results of the Context
and the Activity Recognition components, and tresoaing dashboard shows the decisions made.

User-generated

The alternative flow is the user-generated ones Tlow starts when a user shows the desire to
change something in the way the system currentiraips. For example, a user may override a certain
decision, or change the priority of rules, or mdiyuehange a state of the environment, in caseais w
recognized incorrectly, etc.

The flow starts from one of the informational coments of the User layer. When a user enters
the change, it is processed and is sent to theectigp component. For a manual change of the
environment it would be either the Context, or Awivity Recognition, for a rule change it will libe
Reasoning component, for a decision override itl Wi either the Reasoning, or the Execution
component, etc. From there the flow goes furthemadly.

System-generated

The first type of the system-generated flows comeéine normal system operation, for example,
when executing scheduled events. In such a floweartier stages a plan or a schedule has been
generated that required certain actions to be pedd in the future. In such a case the internatkcle



set, and when the time comes, the action is autcatigtlaunched. The event usually starts from the
Reasoning component, and goes further to the Execabrmally.

Another type of the system-generated flows conctrase-learning and re-training mechanisms.
Usually the Learning component is updated during tourse of system’s operation, in order to
correspond to changing conditions and requiremadgslating after every state change may be too
cumbersome, especially for computationally expensivachine learning methods. Thus, re-learning
happens either at some intervals of time or wharergain condition is met (such as a threshold for
amount of changes is achieved).

Additional Challenges

For an intelligent environment that features alsimgom or a few rooms with no more than a
couple of dozens of devices, the already descrévehitecture will normally satisfy all demands bét
architects and users combined. However, when a&mybecomes larger and grows to include several
floors, a whole apartment or office building, orawseveral houses, new issues emerge that mayrrende
the intelligent environment almost nonoperationdllyproperly solved.

The scalability of the system is the first suchuéssFirst of all, a single server's CPU or storage
power will be quickly outgrown, thus for any moreless large system several servers is a requitemen
Currently many efforts are spent in the area oflokte systems on development of distributed fault
tolerant databases, such as Hadoop (White, 2012nghDB (Chodorow & Dirolf, 2010), Redis
(Sanfilippo & Noordhuis, 2011), Cassandra (Laksh&avialik, 2009), etc. Such databases make a good
base for extendable intelligent environments, &y thiready solve distribution, data replicationjlfa
tolerance, and availability problems out of the .bdrwever, not only the Knowledge Base needs proper
scalability. The amount of sensor data grows \lith number of devices as well, and at some point
concurrency, gueue processing speed and bandwglies may stop the system from further expansion.
Thus it is also important to use proper solutionsanly for data storage, but also for high-volufast
data processing. Such solutions as Twitter Storwit{ér Storm, 2013) or RabbitMQ (Samovskiy, 2008)
provide reliable ways for sending and processingglatreams of data.

The Reasoning layer, however, is the one that mi#fgrsmost from system's expansion. The
reason is that most of the machine learning, seanthreasoning algorithms within the layer may be
computationally expensive, with at least exponénsalving time. While the parallelization and
distribution on several servers may partially dliée the problem, sometimes more fundamental clsange
to the algorithm will be required. One of possiblenges is the usage of approximate algorithms (for
example, greedy algorithms, or genetic algorithinsjead of exact ones for the search optimization
reasoning. Another possible change is the splitihthe system into several independent subsystéms
smaller size, and applying the algorithms withibststems. While with this approach some dependency
between parts from different subsystems may be geemtly lost, if the subsystems have only weak and
not important dependencies between each othemthis be a big improvement in terms of system's
reaction time with only minor consequences in teofrthe optimality of reasoning results.

Another direct consequence of scaling the systeto several distributed servers is the need to
increase the fault tolerance level. If the systeank& only in one room and on one server, crashds an
other unrecoverable faults are rare and restattiagystem is an unpleasant, but fast procedutéhéiza
overall light consequences. However, when serveroine numerous, the rate of errors and crashes
increases as well. The system should be designedcim a way that any single error will cause only a
minor outage. So, for example, the system shoulfdilbeoperational on fifth floor of the buildingven if
the server that manages the second floor crashes.

This may be achieved through addition of speciatesp-level components, i.e. components that
manage the system itself. Monitoring and configaratcomponent may keep track of all running



instances of components and their servers, chaikhbalth status through heartbeats, and keep trfac
their configuration.

In case a component dies, the configuration conqon@l automatically restart it either on the
same server, or on a different one, and reconfigtiher components so that now they contact a new
instance. The configuration component may alsoogperfioad balancing and other utility tasks. As with
databases and data streams, there are solutidmadliaome handy for such component implementation,
such as Apache Zookeeper (Apache Zookeeper, 20 arer (Doozer, 2011).

Case Studies

Finally, in this section we want to showcase sdvemaart environment projects as case studies
and discuss, how their architecture maps to themgépattern, described in previous sections. Bxioep
small differences, it can be seen that the gemmechitectures of the presented projects have nmfangd
in common. These projects are chosen due to sefestalrs. First of all, their focus is on creatioha
fully featured general intelligent building, whidhfluences all aspects of building's operations, as
opposed to specifically targeted projects, sucthase that aim to create a smart lighting systenthase
that only target efficient system's infrastructue¢c. Secondly, all chosen projects have constiycte
implemented and tested an actual real environntleas, the architectures of these projects have gdrove
their feasibility and validity. And finally, they ostly feature clear distinction of architecture mies, as
opposed to several smaller projects, where someule®dan be seamlessly combined, or removed
altogether, due to their reduced functionality.

Even though the presented pattern is the most catymsed one for smart buildings, sometimes
specific requirements may induce other constraintshe project and its architecture. For exampte, a
emerging view of smart home architectures is vigwmart building environments as multi-agent. Cook
in (Cook, 2009) defines four different directiomsmulti-agent research of smart environments: (@alfim
intelligent software agents, (b) tracking multipbsidents, (c) profiling multiple residents, (d) Itihagent
negotiations. The first direction usually assumiesving every module of the system as a separatet,age
with communication protocols guiding interactionstween them. Surprisingly, such a view of multi-
agent architecture can be very well combined with attern, presented here. In fact, in the santk wo
Cook uses the MavHome project, which is one ofaage studies as well, to describe how the agents ca
be organized in a hierarchical layered configurati®ther research directions view as agents either
different people (in which case the smart systesmlfiremains unified, but has to incorporate addai
intelligence for distinguishing people), or diffatedevices. In the latter case, especially if deviare
highly mobile and autonomous, thus may be viewed asmplete system by themselves, the proposed
pattern may be inapplicable or sub-optimal, anceiotigent based architectures may be explored, for
example as described in (Spanoudakis & Moraiti®620

To avoid confusion, when referring to layers ofpexstive projects and the layers of the
architecture pattern, which is described in thigptar, we will refer to the former as “the project
architecture”, and to the latter as “the patteahiecture”.

MavHome

Managing An Intelligent Versatile Home (MavHome)ad) Cook, Battacharya, Heierman llI, &
Lin, 2002) project was one of the first scientifimjects to create a functioning smart environm&he
home system in the project acted as a rationaltagéiose goal was to maximize comfort of its users
minimize costs of operation. The project used legrrand prediction techniques heavily, to predict
mobility patterns of the inhabitants and adapht&nt in a timely manner.

The architecture of the project as described inufigblood, Cook, & Holder, 2004) is shown in
Figure 2. Here we will briefly compare it to thettgan in the Architecture section of this chapter.



Figure 2: MavHome Architecture. Image source: (Youngblood, Cook, &
Holder, 2004)
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The Physical layer of MavHome exactly maps to thgsial layer as described in the pattern: it
contains devices and device interfaces to highempoments, reminiscent of the Common Gateway.

The Communication layer contains a lot of utilitgngponents that help to make the system
operational, such as device drivers, operatingesysproxies, and middleware. When comparing to the
pattern, the Execution component is a part of lthyer of MavHome. As we mentioned at the beginning
of the Architecture Overview section, the implenagioin details are very specific to every systemywso
avoid to include support components into the patteowever they may very well be present in thérhig
level architecture overviews of particular projeads can be seen in the Middleware sub-layer of the
MavHome project example, where they take an impbgitace in the implementation. There is one thing
to note, however, that all device and hardwardedlatility software, such as drivers, operatingtesn,
proxies, etc. may also be conceptually viewed partof the Physical layer of the pattern.

The Information layer of MavHome contains aggregapoediction, data mining and database
services. It can be seen that it combines intoglesilayer parts of both the Ubiquitous and thesRaing
layers of the pattern. Namely, the Knowledge Bawk the Context from the Ubiquitous layer, and the
Learning and the Activity Recognition from the Rewisg layer.

Finally, the Decision layer of the MavHome projemirresponds to the Decision Making
component of the pattern.



It should be noted that in the MavHome atecture there is no speci component or layer,
responsible for interfacing with user, even thosgll interfaces (including mobile interface on PC
actually exist. In case of thdinclusion into the architecture picture, they maystitute the nexiayer,
similar to the User layer of the patte

SmartLab

SmartLab is another project tthas created a functioning smartvironmer (Lépez-de-Ipifia, et
al., 2008) The uniqueness of the project lies in fact that the prect itself features hardware a
middleware parts of thenvironment (the Physical and tlUbiquitous layers in the pattern), wil
commoninterfaces for other projects to use and to crir own reasoning on top it (the Reasoning
layer of the patter).The SmartLab environment was alre used as a base for several other rese
projects, including Assistive Display, ubiClassRg and Eldercare.

The architecture of the project as describ¢ (LOpez-delpifia, et al., 200¢ is shown in Figure 3.

Figure 3: SmartLab Architecture. Image source: (Lopez-de-Ipifia, et al.,
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The Sensing and Actuation layer contains all deviegthin the environmer They include
EIB/KNX bus for lightning,HVAC, presence, temperature and mc on doors and windows, VoIP a
VideolP, Indoor Location System, etc. The 1 layer is the Service Abstraction layer, which tfanss
functionality of thedevices from the first layer into software servicEsgethe these two laye represent
the Physical layer of the pattern, with the sedamdr representir the Common Gatewe



The Semantic Contex& Service Management layer contains the Service ddar which
monitors the environment for activation and deation of devices thus faavailability of services, th
Semantic Context Manager, which stores knowl about device in the common ontology, and the \
Gateway Module, which produc interfaces for thirgarty programs wishing to interact with 1
environment.This layer corresponds to tlUbiquitouslayer of the pattern, with the Service Mana
behaving as the Contegbmponent, the Semantic Context Manager behavingtadie storage of tl
Knowledge Base component, and the Web Gateway behas the Exeution componen

Finally, the Programming, Management and Interact&yer provide web-based interface for
users of the SmartLab laboratory. The Environt Controller allows a user to manually operate
environment through a set wfidgets, while theContext Manager FroriEnd offers a web interface f
management of devicesnfiguration, ontology, rule behavior, and trackithe system log ai statistics.
As can be seen, the layer closely resembles thelbjgr of th pattern.

Note that there is ntayer similar to the Reasoning layer. As already mentioned, the proje
provides capabilities for external program use the environment and middleware while applyhejr
own reasoning. Thus such external programs willesgnt the Reasoning lay when attached. Instead,
the Semantic Context & Service Management layeviges all interface needecor external programs.

Smart Homes for All

Smart Homes for All (SM4AI (Aiello, et al., 2011) was a Europewatide research project that
hadcreated a smart apartment in Rome, Italy. The prdgatured several innovative id within smart
environments, including usage of the Brain Compltearface fo issuing the commands, using plann
techniques for finding aes of actions fc a complex commands, and sophisticated executiomanéms
to avoid concurrencigsues when executing the comma

Figure 4: SM4AIl Architecture. Image source: (Aiello, et al., 2011)
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The architecture of the project as described irl{g\ et al., 2011) can be seen in Figure 4.

There are three main layers. The Pervasive laysiaots all devices and gives the possibility for
devices to be added or removed dynamically thrahghusage of the common Universal Plug and Play
(UPNP) protocol. As can be seen, the layer hadlitteet correspondence to the Physical layer of the
pattern.

The Composition layer contains five major composenthe Repository represents the
Knowledge Base component of the pattern, and contaidatabase, which includes registry of current
devices and their abstract types, description aflavie services, and information about the layafua
house. The Context Awareness collects sensed ddteepresents the logical image of the environment,
thus being the Context component of the patterrough there is no specific Activity Recognition
component from the pattern included in the SM4Adhitecture, some parts of it are also includetha
Context Awareness. The Orchestration componentralsnthe execution, i.e. it invokes the physical
services and receives feedback about the statiwatations. As such it corresponds to the Exeautio
component of the pattern. The Rule Engine compooentains rules of the environment behavior and
constantly checks, based on information from that€&a Awareness component, whether those rules are
satisfied; if so, it invokes the Composition comeot) which applies Al planning techniques to create
set of actions which are sent to the Orchestrafidre Rule Engine and the Composition combined
constitute the Decision Making component of theéquat

The User layer provides access to the home systéts tisers. They may issue direct commands
either through the touch interface or through th@mBComputer Interface. The User layer corresponds
the Reasoning results component of the User ldyireqpattern.

GreenerBuildings

The GreenerBuildings project (GreenerBuildings, 304 the project that is dedicated to creation
of smart offices in a green and energy-efficientywahile maintaining the high level of occupants'
comfort. Occupants' behavior and activities are ki for adaptation to maximize the comfort, while
choosing the most energy efficient state. The ¢iviab setting is constructed on the premises of the
Technical University of Eindhoven, the Netherlantise project puts a lot of effort into the creatimfra
scalable, distributed, and fault tolerant solution.

The architecture of the project is shown in Figbire

The Physical layer of the project contains all desi connected to the Sensors and Actuators
Gateway, which sends the values further into thstesy. As such the Physical layer of the project
resembles closely the Physical layer of the pattdlote that the project layer contains one more
component: the Interconnection with Smart Grid.c8ithe project puts a lot of effort in energy sgyin
the Smart Grid component provides the energy copSom and energy costs information. It also
provides prices of energy from different energyviters, so that it is possible to choose the bdsep
and the best time of task executions when the price the cheapest. The Interconnection with Smart
Grid is the component, specific to the implemeptatof the GreenerBuildings, so there is no such
component in the pattern. However, since it pravidéormation, as other devices do, it can be viea®
a part of the usual Physical layer subsystem.

The Ubiquitous layer contains three main componeft®e Context, the Repository and the
Orchestration, each having more subsystems withifhie Repository contains information about device
types, device instances, and saves historical fdatlurther retrieval. It corresponds to the Knodde
Base component of the pattern. The Context compammdlects information from sensors and transforms
it into a consistent view of the environment. B@aperforms activity recognition, and as such ihbmes
two components of the pattern: the Context andAtbiivity Recognition. The Orchestration performs



execution of commands and also diagnoses errorth@rPhysical layer. Therefore it combines the
Execution and the Diagnosis components of the ipatte

Figure 5: GreenerBuildings Architecture. Image source: (GreenerBuildings,
2013)
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The Composition layer contains two main componetite Control and the Composition
component. The Composition component contains ¢asaning of the system. The Rule Maintenance
system within the component uses constraint satisfa techniques to constantly check all rules that
users have added to the system, and finds the sftatee environment which satisfies all the rules.
Planning component creates a set of actions toxbeuted by the Orchestration, and the CFD is the
special system for optimal handling of the heatimechanisms and air quality within the rooms. Thnes t
Composition component is the Decision Making congmtrof the pattern.

The Control component is the main system interfac user. It shows system’s parameters, and
allows a user to issue direct commands or ovedatdsions of the system. It also collects infororati
about the users’ satisfaction levels. As suchiitiglyy corresponds to the User layer of the patter

Conclusions

As we showed in this chapter, nowadays there &td different initiatives which aim to create
smart automated environments. For many of themathhitecture of the system is the first challenge
they face, and as we showed, independently comstrarchitectures of many project still share smil
component ideas, as a result of the inevitable ga®of finding the best solution and the best myste
design.



In the chapter we collected the knowledge, crebtethose projects, and combined it in order to
describe a common architecture pattern. We shoh@al,existing project implementations resemble the
pattern. We hope that this pattern will be of ferthise and helpful for many researchers and acthité
the intelligent buildings in the future.
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