
Human-Assisted Rule Satisfaction
in Partially Observable Environments

Viktoriya Degeler and Edward Curry
Insight Centre for Data Analytics

National University of Ireland, Galway, Ireland
Email: vdegeler@gmail.com, ed.curry@insight-centre.org

Abstract—Many lightweight installations of smart environ-
ment systems do not have complex and expensive sensing and
actuating capabilities, leaving parts of the environment unob-
servable to the system. This limits reasoning and decision making
complexity of such systems. A decision support system that can
collaborate with human users alleviates this problem by asking
users to provide missing pieces of information or to perform
actuations of which the system itself is incapable. In this paper
we present a smart system that uses declarative rules to describe
the expected behavior of the environment. In any situation the
system aims to satisfy the rules by finding the actions to transform
the environment state to conform to existing restrictions. The
system asks users to provide missing information that is relevant
to the final decision or to perform required actions. A decision
tree is constructed, which defines the actions depending on user’s
answers. The system constructs it in such a way to minimize the
expected efforts of users. We present two ways of constructing
such a decision tree. One uses backtracking for optimal results,
and the other uses a heuristic approach for faster decision tree
creation. We show that the relatively small drop in efficiency
allows most smart environments to use the fast heuristic algorithm
for decision tree construction.

I. INTRODUCTION

Modern smart environments are characterised by high
awareness and high autonomous reasoning capabilities to
react to any changes and events that the environment may
experience. An environment may have numerous sensors that
allow it to interpret the context of its current state. This
information can be used for complex analysis, or for actuations
that modify the environment according to some intelligent cri-
teria [3]. Smart environments can operate according to certain
predefined behavior rules. The rules can be either manually
entered in advance, or learned automatically using machine
learning techniques on previously gathered data. The rules
describing the smart system’s behavior can be quite complex
structures. Rule representation can be easily extended in case
more expressiveness is needed. In practice, the complexity
of a smart environment is often limited not by the rules’
expessiveness, but by the amount of context information that
can be obtained from ubiquitous sensors in the environment.

Wide-scale adoption of smart environment systems is often
hindered by the high costs of the initial system installation.
Dedicated smart environment test sites often have numerous
complex and expensive sensors that are fine-tuned for their
particular location and are perfectly coordinated. Such setup
allows to sense the environment in a very detailed and precise
manner, but comes with high costs in terms of money, initial
efforts to deploy devices, initial test data collection, etc. There-

fore many sites that are initially interested in adding smart
elements to their environment opt for installation of a handful
of simple cheap non-invasive devices, such as light, motion,
or temperature sensors, on-off actuators for electronic devices,
etc. While these devices allow some degree of automation, the
possibilities of complex reasoning remain very limited. More-
over, many parts of such environment remain only partially
observable, further decreasing the amount of decisions that
can be made based on the available information. Collaborative
human-computer interaction and decision support systems are
very useful in closing the gaps of information gathering
and decision making restrictions of purely autonomous smart
systems. Collaborative smart systems assume the possibility to
interact with people in the process of making decisions, asking
them to provide missing information or to perform tasks that
the system cannot perform due to the lack of corresponding
actuators [4]. If the state of unobservable variables influences
the correct set of actions of the system, the system may need to
have additional input from users in order to learn the current
state of an unobservable variable. The system does this by
asking targeted questions, i.e. “What is the current state of the
window in Room 205?”. A trivial solution is to ask questions
about all unobservable variables. This gives the full knowledge,
and the ability to reason as if the environment was fully
observable. The practical implication is that it requires a huge
amount of effort from users to give all these answers, even if
most of them may be not relevant to the final decision. User
disturbances must be limited. When a decision is made and
certain actions should be performed in the environment, users
may also need to be asked to perform those actions if there is
no automated actuator to do the job. As in the case of asking
questions, the aim of the system is not only to choose actions
that allow satisfaction of all rules, but also those that are easy
for people to perform and require the least amount of effort.

In this paper, we present an approach for an automated
system to find solutions that satisfy environmental rules even
if only partial information about the state of the environment
is available. The system deals equally well with situations
where an actuation can be performed by the system itself,
situations where users’ help is needed, situations where enough
information is already available to produce final decisions,
and situations that require additional questions to gather the
required information [9].

II. PARTIALLY OBSERVABLE ENVIRONMENTS

Our approach to increase the reasoning and decision mak-
ing capabilities of a smart system in a partially observable

Fig. 1. Situation Awareness Decision Support Architecture

environment is to allow additional communication with human
users and ask for their help in information gathering and
actuations. The system has no means to automatically learn
or infer the state of unobservable sensors other than explicitly
asking people about their status. Yet such unobservable sensors
can provide an important description of the environment and
its current state, and in some cases the actual value of an
unobservable variable may determine the correct set of actions
to be performed. Observable status can change over time. For
example, a system with a weather prediction module may
report if it is raining outside. Due to most weather predictions
being of probabilistic nature, the raining status variable is
regarded as observable if the probability of rain is higher than
80% or lower than 20%. But the same variable can be regarded
as unobservable if the probability is anywhere in between the
brackets of 20%-80%. In this case the system cannot reliably
know if it is raining or not, so a user enquiry is necessary.
The state of an observable variable is always known, but an
unobservable variable may nevertheless have its state observed,
if a corresponding question was previously answered by users
and the answer is still counted as valid.

Excessive questions and tasks can decrease users’ will-
ingness to participate. If users ignore questions and tasks,
additional reasoning will not be of any help to the system.
Extensive studies of user engagement techniques for smart
environment projects are presented in [16] and are compatible
with our approach. Our system has a notion of a cost associated
with every user task and representing expected user efforts. For
example, if a question does not require leaving a working desk,
the cost of this question can be small. Automated actuation
may have a cost of zero, as it requires no user efforts at all.
Actuation that requires going to another room or performing
a time-consuming activity can have a considerable cost.

The system constructs a decision tree to specify user
tasks and their order. Depending on the answer a user gives,
different actions may be performed or more questions asked
until the system has all the required information to verify full
rule satisfaction. The system aims to minimize the expected
cost for users. We will show two approaches to decision
tree construction. One uses backtracking during search, which
allows to construct optimal decision tree with minimal user
efforts. The other uses a greedy heuristic for choosing user
tasks, and never revisits a choice that is already made. This
allows to construct the decision tree considerably faster, but
can decrease its final efficiency.

III. SYSTEM ARCHITECTURE

The system architecture is presented in Figure 1. The
system has two main communication interfaces: the user
interface (HCI) to interact with human users, and the gateway
to communicate with devices, both sensors and actuators.

Initial information about the environment comes from
the Environment Model database. The full set of variables
describes all aspects of the environment, and a valuation of
these variables can unambiguously represent any environment
state. Variables are of different types, they can include physical
devices; virtual and physical services, an example of which
can be a “mean room temperature” variable that encloses
complex calculations based on several temperature sensors
from different parts of the room; high-level entities, such as “a
person’s activity”, which can be discovered by activity recogni-
tion mechanisms; open data available from web services, such
as current weather, or current price of energy; etc. All these
variables may also come as unobservable variables, in case
there is no automated way to know their current state.

Logical rules govern the dependencies between variables
and constraints over their states. Ultimately, these rules define
the actions to be performed at any moment and every time a
situation changes. For a usual smart system, most of the rules
are entered as a predefined template to reduce manual load, but
users are able to further personalize rules. The main goal is to
keep all rules satisfied at all times. If at some point rules are
unsatisfiable, a responsible person is informed, and the rules
that form a conflict are shown. It is important to note that rules
in propositional logic naturally provide declarative description
of desired environment states, instead of imperative one. This
means rules define the desired final state of the environment,
but the exact actions to be performed are not defined, as they
may vary considerably depending on the original state.

Changes to the Environment Model are propagated to the
Decision Spaces Manager. This module splits variables and
rules into independent subsets, named decision spaces. Further
calculations are only performed within a single decision space
at a time. Due to natural clusterization of variables and rules
within smart environments (such as a cluster of interconnected
variables and rules within a single room), splitting into decision
spaces allows for much greater scalability of a solution.
Within every decision space, rules undergo transformations
as specified in the Rule Transformations module. All rules
are combined and transformed into a disjunctive normal form
(DNF), so that every conjunction of a DNF constitutes one
possible alternative to satisfy all rules of the environment.
This transformation happens only once when the environment
model is changed, so there is no real-time computation cost
associated with this rules transformation.

The transformed rules in a form of satisfiable alternatives
are stored in the Situation Manager module. This module
deals with the current situation, including the latest readings
from sensors and information available from human users via
questions they answer and tasks they perform. The Situation
Manager uses the satisfiable alternatives provided by the Rules
Transformation module and checks which of them can be
potentially satisfied in the current situation, given the infor-
mation about the current state of the environment. In case
when available information is not enough and one or more

user tasks (questions or actions) are required from human
users, the Situation Manager sends the alternatives including
the potential questions to the Decision Tree Manager. The latter
is responsible for creating a decision tree of questions and
actions such that when the user answers them the system can
be sure that all rules are definitely satisfied.

Possible tasks of the decision tree include questions to users
about the current state of unobservable variables, requests to
users to perform certain actions, as well as actions that can
be performed automatically by the system if it has access to
a corresponding actuator. If the task is an automated actua-
tion, it is sent directly to the Sensor and Actuator Gateway,
which in turn sends the required low-level commands to the
corresponding devices. The confirmation of an action is sent
back to the Decision Tree manager so that it can proceed.
If a task requires human involvement, it is sent to the Tasks
Management Module. The module distributes the tasks among
human users taking into account their availability, aptitude and
attitude towards this particular task, their current location, etc.
The person that it deems the best for performing the task
receives a notification via email, Twitter, and/or dedicated web
application and has an opportunity to perform the task or
ignore/reject it, in which case it will be sent to the next person.
The details of the Task Management Module assignment
mechanisms are fully described in [8].

A. Environment Model

An environment E = 〈V, γ,R〉 is defined by a set of
context variables V , a known valuation of these variables γ
and a set of behavior rules R.

Variables are split into two subsets V = S
⋃
A; S

⋂
A =

∅, where S = {s1, s2, ..., sns} is a set of uncontrollable vari-
ables, and A = {a1, a2, ..., ana} is a set of controllable vari-
ables. Every variable v ∈ V has associated finite states domain
Dv , which represents a set of values Dv = {dv1, dv2, ..., dvkv

}
that the variable can take. Every value out of the variable’s
domain has a probability of being active, denoted as pr(dv).
This probability can be calculated from previous sensor logs.
If no prior information is available, a uniform distribution can
be used, giving equal probability to every variable’s value until
further data collection. It is possible for a variable to have an
infinite range of integer or real values, however, in this case
a preproccessing step is done to split all values on sets of
values that correspond to the same valuation of corresponding
rules. For example, if rules contain two simple clauses for an
integer variable vi: vi < 0 and vi > 5, another variable v′i will
be created, that has three possible states, schematically defined
as “< 0”, “[0..5]”, “> 5”. This variable with three states will
be used in further calculations instead of the original one.

Uncontrollable variables, or sensors, S change their state
due to factors external to the system and cannot be directly
influenced by the system. These variables do not necessarily
represent a physical sensor, they can represent a function of a
combination of several sensors, or a certain high-level entity,
such as a person’s activity type, which can be inferred from
an activity recognition task. On the other hand, controllable
variables A can be seen as actuators. This includes automated
devices that the system can control, appropriate commands
from the system, as well as devices that the system cannot

directly affect, but that can be actuated by people, when they
are asked to do so by the system. We assume that it is possible
to change the state of every actuator independently from other
actuators, and that it is possible to transform an actuator from
any domain state to any other domain state.

Variables can be either directly observable, so that the
system always knows their current status, or unobservable. We
use the notation K(v) to define the observable property of a
variable v, where K(v) = true means a variable is observable.
We also define k(v) to represent the observed status of a
variable v. k(v) = true if the state of v is known, and
k(v) = false if the state is unknown. Note that K(v)⇒ k(v).

At every moment of time every variable is in one of the
states out of its respective domain Dv . The system always
knows the state of observable variables K(v). The system also
knows the state of some unobservable variables, after comple-
tion of respective user task (a question about an unobservable
sensor or an action with an unobservable actuator) and before
the knowledge gained from this task becomes obsolete. Known
values of variables for a certain situation constitute a known
valuation of variables γ, where

γ(v) =

{
d(v) ∈ Dv if k(v)
undefined if ¬k(v)

A valuation of variables is most useful when assessing the
current situation. Also, when constructing a decision tree
the system models situations with more information gained
from user tasks. In this case, valuations under consideration
are similar to the current valuation of variables, but contain
additional information gained from answers given by users.

The system decides its course of actions based on the con-
text information about the current environment and according
to certain rules of the system’s behavior. These rules can be
entered manually [6], or learned from previous data logs [7].

There are two different types of rules that represent the dif-
ference between what is necessary and what is desirable. The
first type represents a dependency between variables. For ex-
ample, a rule ¬(room1.blinds1 = down∧room1.window1 =
open) represents a physical constraint that blinds can only
be put into the down position if the window is closed. The
rules of the second type are in essence user preferences. They
describe the desired behavior of the system. For example,
a rule room1.presence > 0 ⇒ room1.ceilinglamp =
on ∨ room1.desklamp = on represents a desire to have a
light on in the room, if there are people inside.

The rules are defined as formulas in predicate logic over
finite domains. Every atomic predicate P (v) is a function of a
state of a variable that represents a certain condition over this
variable with respect to a subset of its values and should result
in true or false. Examples of the most commonly used simple
predicate functions are equality room1.dimmer = 0, inequal-
ities room313.dimmer1 6= 10 or room313.dimmer1 ≥ 10,
subset room1.dimmer ∈ {0; 10; 20}, etc. Atomic predicates
can be combined together to form logical formulas of any
additional complexity, using the standard logical operators:

R ::= P (v) | ¬R | R ∧R | R ∨R | R⇒ R | R⇔ R

The original set of rules Ro contains a set of logical formulas
over variables in V . Every rule r ∈ Ro can be repre-
sented as a constraint to the classical Constraint Satisfaction

Problem (CSP) model, which corresponds to a subset of
variables Vr = {vr1, vr2, . . .}, and represents a subset Xr

of a Cartesian product over their respective domain values
d(vr1)×d(vr2)×. . ., which specifies the sets of values of those
variables that are compatible with each other. This subset can
be trivially obtained by constructing the full truth table for a
set of variables Vr, and retaining only those values from the
table, for which the rule evaluates to true.

B. Decision Spaces

A decision variable may require a user action to be per-
formed in order for the system to satisfy the environment.

Definition 1 (Decision variable): A variable v ∈ V is a
decision variable, defined by B(v), if it is either unobservable
or an actuator: B(v) = true⇔ ¬K(v) ∨ v ∈ A.

We assign a cost c(v) to each decision variable, to quantify
the amount of estimated user efforts to get an answer to a
question or to perform an actuation.

Smart environments of even moderate sizes may contain
hundreds of sensors. With unobservable variables this number
grows even bigger. This makes it practically impossible to
check the state of all variables after every detected event,
especially considering the dynamicity of a typical environment,
with possibly many events per second. When the system is
making a decision on which questions to ask users, we aim to
only take into consideration variables that are affected by the
latest event. Also we only aim to use rules that affect these
variables and that are relevant to the current situation.

In order to understand which rules are relevant to a decision
to be made, all variables and rules are split in as many as pos-
sible independent decision spaces. Informally, a decision space
is a combination of mutually dependent decision variables with
rules that create their dependency. Rules that contain the same
decision variable are always a part of the same decision space.

Definition 2 (Decision space): A decision space is a tuple
DSi = 〈Vi, Roi〉 of a set of variables and a set of rules, s.t.

• Every variable is a decision variable: ∀v : T (v);

• Every rule contains only decision variables from set
Vi: ∀r ∈ Roi, ∀P (v) ∈ r : v ∈ Vi.

• It is impossible to split the decision space into inde-
pendent sub-spaces:
@V1, V2 ⊂ Vi, R1, R2 ⊂ Roi, s.t.:

1) V1 6= ∅, V2 6= ∅, V1 ∩ V2 = ∅, R1 ∩R2 = ∅;
2) ∀r ∈ R1,∀P (v) ∈ r : v ∈ V1;

∀r ∈ R2,∀P (v) ∈ r : v ∈ V2;
3) ∀r ∈ Roi\R1,∀P (v) ∈ r : v /∈ V1;

∀r ∈ Roi\R2,∀P (v) ∈ r : v /∈ V2.

Every environment has its variables and rules split into a
set of decision spaces. We define this set as follows:

Definition 3 (Decision space set): The decision space set
for an environment E = 〈V, γ,Ro〉 is a set of decision spaces
DSS = {DSi(Vi, Roi)} such that:

• ∀i 6= j : Vi ∩ Vj = ∅, Ri ∩Rj = ∅
•

⋃
i(Vi) = V ,

⋃
i(Roi) = Ro

• No rules from one decision space can contain variables
that are a part of another decision space: @j 6= i :
∃r ∈ Roj ,∃P (v) ∈ r : v ∈ Vi.

Every decision variable of the environment corresponds to
one and only one decision space. However, changes to values
of observable sensor variables may affect several decision
spaces at once. When some observable sensor variable changes
its value, the system checks every affected decision space
to establish if there is a change of status of any atomic
clause that contains this variable. If at least one atomic clause
has changed its status, the decision tree for this decision
space is reconstructed, while keeping and reusing the available
information from previous non-obsolete answers, if such exist.

C. Rules Transformation

Rules, as well as variables, can be added or removed from
the system dynamically, without the need for a full restart.
The initial form of rules can be very diverse, and the same
rule can be expressed in different forms. Therefore the system
transforms all rules into a form that is the most suitable for
further reasoning. It is done once when a rule is added or
removed, therefore it does not increase the computational load
during the normal course of the system’s operation.

All further reasoning is done for every decision space
DS = 〈V,Ro〉 separately. First of all, the set of rules Ro is
transformed into a disjunctive normal form (DNF). In order to
perform this transformation all rules are combined into a single
rule by the AND-clause: rcombined =

∧
iRoi. It is possible,

because this does not change the final decision to be made,
since all rules must be satisfied at the same time. After a single
rule is created, standard transformation to DNF is performed.
After the transformation, the rule is presented in a form
rcombined =

∨
i

∧
j P
′
ij(vij). Here P ′ij(vij) is either an atomic

predicate P (vij) or a negated atomic predicate ¬P (vij). The
rule is also simplified by removing any conjunctions that
necessarily result to false. If any conjunction

∧
j P
′
ij(vij)

contains several atomic predicates with the same variable, these
predicates are simplified as well and are combined by replacing
them with a single predicate that only allows states that are
an intersection of allowed states for all original predicates:
P ′new(v) = P ′1(v) ∧ P ′2(v) ∧ P ′3(v).

The DNF representation is the easiest form to work with
due to several benefits. Among all conjunctions of a DNF
rule, only a single one should be satisfied in order for a full
rule to be satisfied. Therefore we can regard each conjuction
of a combined rule as a separate satisfiable alternative. We
denote this set of conjunctions as R∗ = {

∧
j P
′
ij(vij)}.

Note that every conjunction represents a set of restrictions
over variables, where each variable has restrictions that are
independent from another variable. We denote as δ(v, r) ⊆ Dv

a set of states that are allowed by the rule r ∈ R∗. We
also use the notation δ(v, P ′(v)), where P ′(v) is a single
atomic clause that depends on variable v and may be a part
of rule r. Given the transformation as described above, the
question of rule satisfaction is transformed into the question
of finding a conjunction that can be satisfied, which in turn
coincides with the question of finding an alternative in which
all variables are in a state that is within the allowed set of
states δ(v, r), not restricted by predicates of a conjunction r.

While sensor variables must be apriori in this set at the time of
searching for a solution, actuator variables may be outside of
the required set, as this does not prevent the alternative from
being satisfiable. In this case the corresponding actions to set
an actuator to a state specified by a satisfiable alternative will
be created. Another benefit of the DNF representation is that
it makes it easy to calculate the cost estimation heuristic for
the expected cost that should be spent to make sure all rules
are satisfied.

Example. Assume the system has five variables. Three of
them are sensors: presence of people in a room (PR), relative
humidity inside (H), and whether it is raining outside or not
(R). And two variables are actuators: an air conditioner (AC),
and a window (W). The system also has two behavior rules.
The first one states that if humidity is high while someone is
in the room, either an air conditioner should be turned on, or a
window should be opened, but only if it is not raining outside:
H > 80 ∧ PR = T ⇒ AC = T ∨ R = F ∧W = T . The
second rule adds a constraint over the air conditioner and the
window, the AC cannot be turned on if the window is open:
¬(AC = T ∧W = T). After two rules are combined with the
∧-clause, transformed into DNF and simplified, the resulting
six disjuncted clauses are shown in the first column in Table I.

D. Situation Manager

After rules are transformed into a set of alternatives,
each of which can potentially satisfy all original rules, the
main question is: which alternative should be chosen at every
moment? The main restriction is that the alternative must
be satisfiable, in other words, every atomic predicate of an
alternative must result to true. This means the current state of
the predicate’s variable must be in the set of states, allowed by
this predicate. If the variable is unobserved, a question about its
current status must be asked in order for the system to know the
status of this atomic predicate. Every question about the current
state of an unobservable variable may potentially rule out some
alternatives (in case the current state of the variable in question
does not correspond to a variable restriction specified in
these alternatives), with different answers ruling out different
alternatives. Therefore all questions must be chosen in such
a way that there is a follow up choice of actions for every
possible answer to the question, so the final actions would
result in a satisfaction of at least one satisfiable alternative.

This is represented as a decision tree, where every node
corresponds to a user task, a question or an action. A node
branches to several children depending on the answer given,
i.e. directed edges represent possible variable states. We con-
struct a decision tree in such a way to minimize the expected
user efforts, as quantified by the cost of a decision variable
c(v). Decision tree is represented by a tuple DT = 〈N,E〉,
where N is a set of decision nodes, and E is a set of directed
edges. Decision node n ∈ N can be in one of three forms:

1) Q(v) iff v ∈ S ∧ ¬K(v) - a question. This type of
node is only applicable to unobservable sensor variables and
represents a question to human users about the current state
of a variable. No changes to the environment are performed
during the execution of this task.

2) T ({vi, dvi}) iff ∀vi ∈ A - a set of actions. This type
of node represents a set of actions to be performed in the

TABLE I. EXAMPLE TRANSFORMED RULES WITH EXPECTED
SATISFACTION COSTS. ORIGINAL RULES:

H > 80 ∧ PR = T ⇒ AC = on ∨ ¬R ∧W = open AND
¬(AC = on ∧W = open).

Cost: 2 1 2 7 4 Total
Transformed Rules H PR R AC W Cost
PR 6= T ∧W 6= T F F 5
PR 6= T ∧ AC 6= T F F 8
H ≤ 80 ∧W 6= T ≤ 80 F 6
H ≤ 80 ∧ AC 6= T ≤ 80 F 9
AC = T ∧W 6= T T F 11

R = F ∧ AC 6= T ∧W = T F F T 13

Fig. 2. Decision tree example for Table I

environment. It is only applicable to actuators, both observable
and unobservable. For automated actuators, the action can be
performed by the system directly. For actuators that require
a user’s action, a corresponding task is created. This node
requires changes to the environment to be made.

3) Done is an alias for T ({}), an empty set of actions.

Q(v) is a non-leaf node, and for any path from the root to
any leaf of the tree, all nodes except the last one are questions.
T ({vi, dvi}) and Done are leaf nodes. They are necessarily
located at the bottom of the tree, and any path of the tree has
one and only one action node at the end.

Decision edge e = 〈d(vi) → N〉 ∈ E represents a path
to be taken after a question about the state of variable vi is
answered to be d(vi). In this case, N is the next node (question
or actions) to be executed.

When constructing the decision tree we use a top-down
approach. We start with available situation, and check possible
questions or actions to be taken at this moment. If a set of
actions is chosen, construction of this path is completed. But
if a question is chosen, a question node gets expanded and
the algorithm recursively constructs a tree for every possible
answer, taking into account the newly obtained information.

We explore two algorithms to construct a decision tree. The
first one is a heuristic algorithm that chooses a variable with the
best cost estimation and immediately expands it. Following a
greedy approach, the algorithm never revisits previous choices,
therefore it may produce a sub-optimal decision tree. The
second algorithm expands the most promising node with the
best cost estimation, but after calculating the actual cost, it will
try to expand the second best node, if its estimation is lower
than the actual cost of the first one. The backtracking capability
of the second algorithm guarantees the optimality of a solution
as long as the chosen cost heuristic is proven to be admissible,
but increases the computational costs considerably. The actual

performance on site allows people to choose the algorithm they
want to use in their smart home system.

The transformation of rules into a set of satisfiable alter-
natives makes it easy to calculate the cost estimation heuristic
for every possible choice of a decision variable. The cost
represents the expected minimum amount of effort that should
be spent in order to guarantee the satisfaction of all rules,
i.e. the definite satisfaction of at least one of the alternatives
specified by the DNF form. The idea behind the cost estimation
calculation is the following. In order to verify that one of
the alternatives is satisfied, we must know the actual values
of all unobservable variables that have restrictions in this
alternative, in order to ensure the restrictions hold. And we
must perform actions for all actuators that are not in the state
required by this alternative. Therefore, the bare minimum of
effort for this alternative to be satisfied is the sum of all
questions for unknown unobservable variables and all actuators
that are not in the required state. This value can easily be
calculated, but while it represents the minimum expected cost,
during the expansion other variables may be asked about as
well, therefore increasing the actual cost. For example, in an
environment as described in Table I, the system may want
to create a question about the presence of people (PR) in
the room, hoping to satisfy the first alternative, as it is the
cheapest. However, if the answer is that there are people inside,
it immediately rules out the first alternative as a possible
solution, therefore the system may try to satisfy the third one.
The minimum cost to satisfy the third alternative is 6, which
includes a question about the relative humidity (H) and an
action of closing the window (W). But as soon as the question
about the presence is asked, the total minimum cost of the third
alternative goes up to 7, to include the cost of this question,
even though it is irrelevant to the third alternative.

There is one more way to ensure the satisfaction of at least
one alternative, in case it is guaranteed that original rules are
necessarily satisfiable, i.e. for every possible combination of
sensor values there is a combination of actuator states that
satisfies all rules. If this ability is ensured, in any situation it
is possible to consider only actuators, and try to find a set of
actions that will satisfy the actuators part of all alternatives.
No questions about unobservable sensors need to be asked,
because we know that at least one of the alternatives is
necessarily satisfiable, i.e. the sensor part definitely holds. If
the actuator part holds for all alternatives, it also holds for the
alternative with satisfied sensors, therefore we have a fully
satisfied alternative. Such a solution usually requires extra
actions, but avoids asking any questions about sensor variables.
Therefore it may be optimal in case there are many questions,
or they require more efforts than extra actions to be performed.

It can easily be shown that the cost heuristic is admissible:
(i) the cost heuristic is always less than or equal to the actual
cost of an alternative, because at least the relevant questions
definitely need to be asked; and (ii) it is always monotone,
because during the expansion process the cost may increase
due to irrelevant questions being asked, but will not decrease.
Given the admissibility of the heuristic, we can be sure that
the backtracking algorithm returns the optimal solution.

We now present the algorithm to calculate the expected cost
of a certain situation. Algorithm 1 uses the known valuation
of the environment to retain only those rules that can still be

satisfied. Algorithm 2 shows the calculation of the minimum
cost for a currently available solution. The currently available
solution is the one with no uncertainty, i.e. no questions need
to be asked, only actuations may be performed. If there are no
immediately available solutions, the algorithm will return ∞,
otherwise it will return a set of actions to be performed and
their cost. Algorithm 3 builds up on the previous algorithm,
and calculates the expected cost heuristic for a solution even in
case there is no currently available one. Finally, Algorithm 4
presents the full process of decision tree construction. Figure 2
shows a decision tree constructed for an example in Table I.

Algorithm 1 Retain only potentially satisfiable alternatives
1: function Rsat (E - environment)
2: Rsat ← {r ∈ E.R∗ iff ∀P ′(v) ∈ r s.t. v ∈ S : ¬k(v) ∨
γ(v) ∈ δ(v, r)}

3: return Rsat

IV. PERFORMANCE EVALUATION

We performed several experiments to evaluate the effec-
tiveness of our approach. The system was written in Scala,
and run on Windows 8.1 x64, Intel Core i7-4702MQ @
2.2GHz, 8 Gb RAM machine. As a baseline we use randomly
constructed environment instances. All variables are split into
three equal subsets: observable sensors, unobservable sensors
and actuators. Note that observability of actuators is not
relevant for the purpose of decision tree construction. If the
state of an actuator is unknown, it is treated in the same way
as if the state is not within required bounds, so an action
on this actuator is always required if there is any restriction
associated with it. All variables have boolean domains, which
does not lead to loss of generality, because any environment
with variables of arbitrary domains can be converted into an
equivalent environment that has a boolean variable for every
possible domain value of original ones. Rules are created
randomly and are constructed in such a way so that they
are always satisfiable, i.e. for any possible combination of
sensor values there is a state of actuators that satisfies all
rules. For every number of variables in test, we created 10
different environments, and for every environment we created
10 random starting situations. Therefore for each number of
variables the decision tree construction algorithm ran 100
times. For every situation we ran two decision tree construction
algorithm variations, one with backtracking capability (B) and
one without backtracking (NB). We noted the time that was
needed to find a solution, and the cost of the found solution.
We set the deadline of 10 seconds for the algorithm to find a
solution. If the solution was not found after 10 seconds, the
instance was stopped and the failure was noted.

Figure 3a shows the average time to find a solution.
It includes cases that were finished before the 10 seconds
deadline. The time is shown for all cases finished on time
using the algorithm with backtracking (B); all cases finished on
time using the algorithm without backtracking (NB only); and
cases using the algorithm without backtracking, but only if the
backtracking algorithm also finished on time (NB both). The
last line is included for fair comparison with the backtracking
algorithm, exactly the same cases are included to “NB both”
and “B”. As expected, there were no cases where the back-
tracking algorithm finished on time, but the algorithm without

(a) Average time to construct a decision tree, ms (b) Percent of cases, finished in less than 10 s (c) Occurence rate of B vs NB cost difference

Fig. 3. Running time and solution performance comparison of algorithms with backtracking (B) and without backtracking (NB)

Algorithm 2 Minimum cost of currently available solution
1: function costCurrent (E - environment)
2: if Rsat(E) = ∅ then return ∞ end if
3: totalActs← ∅; totalCost← 0
4: singleActs← ∅; singleCost←∞
5: for all r ∈ Rsat(E) do
6: if @r.v ∈ S : ¬k(v) then
7: acts← {∀v s.t. E.γ(v) /∈ δ(v, r) : 〈v, δ(v, r)〉}
8: cost←

∑
act∈acts c(act.v)

9: if cost < singleCost then
10: singleActs← acts; singleCost← cost
11: end if
12: else if totalCost <∞ then
13: for all a ∈ r.v : v ∈ A do
14: if totalActs.contain(a) then
15: Find 〈a, dold〉 in totalActs
16: totalActs← totalActs\〈a, dold〉
17: else
18: dold ← Dv

19: totalCost← totalCost+ c(a)
20: end if
21: dremain ← dold ∩ δ(a, r)
22: totalActs← totalActs ∪ 〈a, dremain〉
23: if dremain = ∅ then totalCost←∞ end if
24: end for
25: end if
26: end for
27: if singleCost =∞∧ totalCost =∞ then
28: return ∞
29: else if singleCost <∞ then
30: return 〈singleActs, singleCost〉
31: else
32: return 〈totalActs, totalCost〉
33: end if

Algorithm 3 Calculation of the expected cost heuristic
1: function costHeuristic (E - environment)
2: minCost← costCurrent(E)
3: for all r ← Rsat(E) do
4: cost← 0
5: for all v ∈ E.V do
6: if v ∈ S ∧ ¬k(v) ∨ v ∈ A ∧ E.γ(v) /∈ δ(v, r) then
7: cost← cost+ c(v)
8: end if
9: end for

10: minCost← min(cost,minCost)
11: end for
12: return minCost

Algorithm 4 Decision tree construction
1: function decisionTree (E - environment)
2: (actions, cost)← currentCost(E)
3: queue← ∅ ; priority queue 〈cost, variable〉
4: for all v ∈ S : ¬k(v) do
5: expCost← c(v)
6: for all dv ← Dv do
7: Enew ← 〈E.V ;E.γ + (v → dv);E.R〉
8: cost← costHeuristic(Enew)
9: expCost← expCost+ pr(dv) ∗ cost

10: end for
11: queue.add(〈expCost, v〉)
12: end for
13: bestDecision← null; bestCost←∞
14: while queue 6= ∅ ∧ queue.head.cost < bestCost do
15: 〈expCost, v〉 ← queue.pop
16: actualCost← c(v); decisions← ∅
17: for all dv ← Dv do
18: Enew ← 〈E.V ;E.γ + (v → dv);E.R〉
19: 〈cost, dec〉 ← decisionTree(Enew)
20: actualCost← actualCost+ pr(dv) ∗ cost
21: decisions← decisions ∪ (dv → dec)
22: end for
23: if actualCost < bestCost then
24: bestCost← actualCost
25: bestDecision← (v → decisions)
26: end if
27: if (no backtracking) then Empty queue end if
28: end while
29: return 〈bestCost, bestDecision〉

backtracking did not. Figure 3b shows the percentage of cases
that finished within the 10 seconds deadline.

It can be seen that the algorithm without backtracking
(NB) requires much less time on average than the one with
backtracking (B). However, the NB algorithm is suboptimal,
while the B algorithm gives the optimal solution. Therefore
we must compare found solutions, in order to understand the
trade-off in effectiveness versus time. For every case when both
algorithms finished before the deadline, we recorded the cost
of the found decision tree. The calculated difference between
solutions found by the NB algorithm and optimal solutions
is shown in Figure 3c. It can be seen that in almost 40%
of cases the heuristic algorithm with no backtracking still
managed to find the optimal solution. 88% of cases were
above 95% percent of effectiveness, compared to the optimal
solution, and 99% of cases were above 90% of effectiveness.

There were no cases where the solution found by the NB
algorithm was below 81% of effectiveness compared to the
optimal one. In most smart environments, the optimality of
a solution is not essential, but it is the general effectiveness
of solutions that is important. Therefore these results allow
us to conclude that it may be beneficial to use the algorithm
without backtracking due to faster solution times, compared to
relatively small increase of the final cost of found solutions.
Other heuristics may be investigated to push solutions of non-
backtracking algorithm closer to optimal values.

V. RELATED WORK

Since the conception of smart environments research,
many projects investigated different reasoning approaches to
intelligent buildings automation [11]. Several studies propose
constraint satisfaction techniques to solve reasoning problems.
For example, multi-agent coordination in smart homes is
modelled as a distributed constraint optimization problem
in [12]. Every agent relies only on communication with other
agents and manages one or more variables. In this scenario
constraints model the desired minimum-cost concurrent be-
havior of agents. In [2] a problem solving environment deals
with complex scheduling problems, which are represented as
constraints. They present O-OSCAR, a constraint based object-
oriented scheduling framework. A constraint-based AI planner
is used in [10] to compose services for smart home scenarios.
The planner allows the expression of extended goals and uses
the latest advancements in the CSP field to make the search
faster using enhanced inference techniques.

Many works deal with partial observability of environ-
ments. One approach includes modelling the events as Markov
processes [1]. Such environments usually exclude the possibil-
ity to collect more information from users, therefore require
the system itself to act and collect information by observing the
environment transformations. A typical task for such partially
observable environments is robot navigation [15].

Traditionally decision tree construction algorithms such as
ID3 [13] and C4.5 [14] use machine learning approaches to
find statistical correlations of numerous data points for long-
term usage. In one such study [5], an automated prompting
system for smart environments uses decision tree, constructed
from previously gathered and annotated data, to guide par-
ticipants who are asked to perform certain activities. If they
perform wrong or irrelevant activities, a prompt is issued to
guide them back on course. On the other hand, we investigate
the possibility of real-time decision tree construction, based
on existing constraints and current context information for
knowledge gathering and automated decision making purposes.

VI. CONCLUSIONS

We presented a smart system that uses declarative rules
to describe the desired behavior of a smart environment. The
system operates equally well in fully observable environments,
and in environments, where the inadequate number of sensors
and actuators limits the capabilities of automated reasoning
and decision making. By having an ability to communicate
with users and ask them to provide additional information or
to perform actions that cannot be performed automatically, the
system has the ability to satisfy the expected restrictions even

for complex partially observable situations. In our approach
we minimize users’ participation and their expected efforts to
perform the tasks. The system constructs the decision tree of
questions and actions to be performed, based on the given
answers. We showed that it is possible to construct the optimal
decision tree with minimum user efforts, or to use a heuristic
which severely decreases the construction time, while keeping
the efforts within 90% effectiveness close to the optimum.

ACKNOWLEDGMENT

This work has been supported in part by the Irish Research
Council under the New Foundations Scheme and Enterprise
Ireland, the National Development Plan and European Union
under Grant Number IP/2012/0188.

REFERENCES

[1] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman.
Acting optimally in partially observable stochastic domains. In AAAI,
volume 94, pages 1023–1028, 1994.

[2] Amedeo Cesta, Gabriella Cortellessa, Angelo Oddi, Nicola Policella,
and Angelo Susi. A constraint-based architecture for flexible support to
activity scheduling. In AI* IA 2001: Advances in Artificial Intelligence,
pages 369–381. Springer, 2001.

[3] Diane J Cook and Sajal K Das. How smart are our environments? an
updated look at the state of the art. Pervasive and mobile computing,
3(2):53–73, 2007.

[4] David N Crowley, Edward Curry, and John G Breslin. Closing the
loopfrom citizen sensing to citizen actuation. In Digital Ecosystems
and Technologies (DEST), 2013 7th IEEE International Conference on,
pages 108–113. IEEE, 2013.

[5] Barnan Das, Diane J Cook, Maureen Schmitter-Edgecombe, and Adri-
ana M Seelye. Puck: an automated prompting system for smart envi-
ronments: toward achieving automated prompting - challenges involved.
Personal and Ubiquitous Computing, 16(7):859–873, 2012.

[6] Viktoriya Degeler and Alexander Lazovik. Dynamic constraint reason-
ing in smart environments. In Tools with Artificial Intelligence (ICTAI),
pages 167–174, Nov 2013.

[7] Viktoriya Degeler, Alexander Lazovik, Francesco Leotta, and Massimo
Mecella. Itemset-based mining of constraints for enacting smart
environments. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), pages 41–46. IEEE, 2014.

[8] Umair ul Hassan and Edward Curry. A capability requirements
approach for predicting worker performance in crowdsourcing. In
Collaborative Computing: Networking, Applications and Worksharing
(Collaboratecom), pages 429–437. IEEE, 2013.

[9] Umairul Hassan, Murilo Bassora, Ali H Vahid, Sean O’Riain, and
Edward Curry. A collaborative approach for metadata management
for internet of things: Linking micro tasks with physical objects. In
Collaborative Computing: Networking, Applications and Worksharing
(Collaboratecom), pages 593–598. IEEE, 2013.

[10] Eirini Kaldeli, Ehsan Ullah Warriach, Alexander Lazovik, and Marco
Aiello. Coordinating the web of services for a smart home. ACM
Transactions on the Web, 2012.

[11] Tuan Anh Nguyen and Marco Aiello. Energy intelligent buildings based
on user activity: A survey. Energy and buildings, 56:244–257, 2013.

[12] Federico Pecora and Amedeo Cesta. Dcop for smart homes: A case
study. Computational Intelligence, 23(4):395–419, 2007.

[13] John Ross Quinlan. Induction of decision trees. Machine learning,
1(1):81–106, 1986.

[14] John Ross Quinlan. C4.5: programs for machine learning, volume 1.
Morgan kaufmann, 1993.

[15] Reid Simmons and Sven Koenig. Probabilistic robot navigation in
partially observable environments. In IJCAI, volume 95, pages 1080–
1087, 1995.

[16] Ray Yun, Peter Scupelli, Azizan Aziz, and Vivian Loftness. Sustainabil-
ity in the workplace: nine intervention techniques for behavior change.
In Persuasive Technology, pages 253–265. Springer, 2013.

