
Combined Danger Signal and Anomaly-Based
Threat Detection in Cyber-Physical Systems

Viktoriya Degeler, Richard French, and Kevin Jones

Airbus Group Innovations, Newport, UK
{viktoriya.degeler,richard.french,kevin.jones}@eads.com

Abstract. Increasing number of physical systems being connected to
the internet raises security concerns about the possibility of cyber-attacks
that can cause severe physical damage. Signature-based malware protec-
tion can detect known hazards, but cannot protect against new attacks
with unknown attack signatures. Anomaly detection mechanisms are
often used in combination with signature-based anti-viruses, however,
they too have a weakness of triggering on any new previously unseen
activity, even if the activity is legitimate. In this paper, we present a
solution to the problem of protecting an industrial process from cyber
attacks, having robotic manufacture facilities with automated guided ve-
hicles (AGVs) as our use case. Our solution combines detection of danger
signals with anomaly detection in order to minimize mis-labelling of le-
gitimate new behaviour as dangerous.

Key words: intrusion detection; anomaly detection; danger theory; au-
tomated guided vehicles; cyber-physical systems

1 Introduction

While increasing numbers of physical systems being connected to the internet
brings enormous possibilities for technological progress, it also raises huge secu-
rity concerns. Cyber-Physical Systems have already been shown to be susceptible
to cyber attacks that can cause (sometimes catastrophic) physical damage. The
German Federal Office for Information Security (BSI) revealed in 2014 that a
steel manufacturing facility suffered massive damage after it was not able to shut-
down a blast furnace in a controlled manner due to malicious code implanted into
its control system [3]. Earlier, the Stuxnet virus gained fame after successfully
attacking programmable logic controllers of Iran’s nuclear centrifuges, changing
their rotation speed, which resulted in physical damage to many of them [5].

Signature-based malware protection can detect known hazards, but cannot
protect against new attacks with unknown attack signatures, which is especially
important due to advances of automated malware creation [1]. Anomaly detect-
ing intelligent mechanisms are often used in combination with signature-based
anti-viruses, in order to detect and prevent anomalous activity. As an example,
the negative selection [2] approach compares all new events with a previously
constructed set of non-self entities, i.e. those that fail similarity tests with known

2 Viktoriya Degeler, Richard French, and Kevin Jones

self entities. Unfortunately, anomaly detection mechanisms have a known weak-
ness of triggering on any new previously unseen activity. In some cases, such
as fraud detection in banking systems, anomaly detection leads to great results,
because it can be reasonably expected that “self” detector cover all types of legit-
imate behaviour and any anomaly (“non-self”) is therefore a fraud. However, in
many other types of systems, including internet of things, network-based ones,
the behaviour changes over time and has legitimate anomalous events. Using
anomaly-based threat detection in such systems will create huge amount of false
positives, i.e. mis-detecting legitimate behaviour as an attack, thus disrupting
normal course of operations, which can sometimes lead to economic and opera-
tional losses comparable to genuine attacks. Therefore it is important that the
adaptive detection mechanism keeps both types of mistakes (false negative and
false positive) at minimum. On the other hand, in Danger Theory [7], coming
from Artificial Immune Systems research area [4], responses are triggered by
danger signals rather than presence of non-self objects. Entities are allowed to
exist until harmful signals are received. If a harmful activity (e.g. cell death) is
detected, the immune response is triggered, attacking either all foreign entities,
or all entities locally, depending on the severity of the danger.

In this paper, we present a solution to the problem of protecting an industrial
process from cyber attacks, having robotic manufacture facilities with automated
guided vehicles (AGVs) as our use case. Our solution combines detection of
danger signals with anomaly detection to minimize mis-labelling of legitimate
new behaviour as dangerous. In Section 2, we present our use case and system
architecture. Section 3 provides detailed explanation of our danger detection
module. Section 4 evaluates the solution and Section 5 concludes the paper.

2 Automated Guided Vehicles Protection

Factories with a complex manufacturing cycle often rely on Automated Guided
Vehicles (AGVs) for moving materials across work cells. AGV control systems
and equipment are usually networked and distributed to allow submitting tasks
and operate AGVs remotely. This puts AGV control systems at risk of being
exposed to cyber attacks, as has been shown by recent studies [8].

Our system evaluates all jobs that are performed by the AGVs, to understand
the origins of danger signals and to prevent dangerous jobs from execution. Our
system is also designed to minimize the amount of false danger detections, to
allow legitimate jobs to be executed uninterrupted. The high-level architecture
is shown in Figure 1. Main modules include the Command and Control that
issues job requests; the AGV Controller that generates low-level action plans
and chooses appropriate AGVs for execution; the self-learning Danger Detection
Module (DDM) that verifies jobs based on their anomaly and danger levels; and
the Facility Monitor that alerts the DDM of any independently detected dangers.

The Command and Control (C&C) module oversees the whole manufacturing
process. It provides dashboards and control to human operators, but is also
able to automatically generate high-level requests, such as “Deliver item Omega

Threat Detection in Cyber-Physical Systems 3

Fig. 1: System Architecture

from collection point A to delivery point B” to support a normal manufacturing
process. Requests are passed to the appropriate AGV central controller (AGVC).
The AGVC generates a job plan formed from a sequence of AGV atomic actions
together with a choice of AGV that should satisfy the original request. This job
is then sent for verification to the DDM. If the job is approved by the DDM,
then the AGVC executes it by assigning the sequence to the associated AGV.

The Facility Monitor is an independent verification system that monitors the
factory floor and raises an alert (called a danger signal) if anything goes wrong.
Any event that happens unexpectedly, any discrepancy between the expected
and observed states of the system causes such an alert, albeit with different
severity. Examples of such events include a robot performing an action different
from the one on its action queue, a robot not responding to commands, cargo
being taken to the position that is not on delivery positions list, etc.

The Danger Detection Module contains a history of jobs and performs simi-
larity detection and clustering of every new job request, to calculate its anomaly
score. When a danger signal is observed, the DDM checks current and previ-
ously finished jobs to find those that are likely to be the cause of the signal.
Anomalous jobs are regarded as much more likely to be the cause, but all jobs
are checked. Every danger signal increases the threat level of a job. If the threat
threshold is reached, the DDM terminates the job by sending the corresponding
command to the AGVC, and rejects similar jobs in the future. If a subsequence
of actions within a job is identified as being the cause, the DDM rejects only this
subsequence, not the whole job. The AGVC takes this into consideration, and,
if possible, generates and resubmits a new plan of actions in order to satisfy the
C&C request. On receipt of a sequence from the AGVC, an AGV executes it
and reports back with its final status. Importantly, during movement, the AGV
sends updates of its position and status to the AGVC, in the event that the

4 Viktoriya Degeler, Richard French, and Kevin Jones

controller needs to modify the remaining elements of the plan for that particular
task. All relevant details are also sent to the DDM.

3 Danger Detection Module

The Danger Detection Module can be regarded as a police of the manufacturing
facility, in that its main goals are to monitor and verify the safety of all factory
operations; find the jobs that create problems; be able to stop them and prevent
them from creating problems again. In terms of a robotic manufacturing facility,
the DDM should be able to: (1) monitor jobs that are being performed on the
facility premises in real-time; (2) have information about how anomalous or po-
tentially dangerous these jobs are; (3) collect information about newly detected
dangers in the facility and correlate it with active jobs, potentially finding the
cause of danger; (4) if the cause of danger is found, raise an alarm in order to
stop the job and forbid the execution of other similar jobs.

Fig. 2: Internal DDM architecture.

The internal architecture of the DDM is shown in Figure 2. Initially the DDM
populates the Knowledge Base with a historical dataset of previous jobs, finding
clusters of similar jobs and calculating their parameters, such as frequency rate,
anomaly and danger scores. During production, the DDM monitors active jobs,
keeping track of all jobs that are currently in progress, their state of execution,
i.e. which actions were already performed, and which are planned, etc. The DDM
also performs real-time job verification for every new job request that the AGVC
creates. This includes finding similar job clusters, calculation the anomaly score
of a job, checking previous danger signals of similar jobs, and deciding if a job
is a normal one or a dangerous one and should be rejected. If any danger signal

Threat Detection in Cyber-Physical Systems 5

arrives, the DDM correlates active jobs with danger signals, deciding on which
jobs may be the cause of the signal, and if the danger is severe enough for the
job to be immediately stopped. The Knowledge Base is constantly updates with
recent data of executed jobs, danger signals, etc., so the algorithm keeps learning
and adapting to changing conditions. Finally, the DDM has the Operator’s UI
that gives capability to human operators to control the system and its decisions.

3.1 Knowledge Base

The Knowledge Base contains a dataset of jobs that correspond to a normal
activity of a factory, and performs clustering and anomaly detection, as well as
storing the information about the danger score of clusters. Initially, a dataset of
historical jobs is used to train the system, to create clusters of similar jobs, and
understand their frequency rates. As soon as an active job is finished, for any
reason (successful execution or stopping due to danger signals), it is also sub-
mitted to the Knowledge Base, in order to update the danger detection dataset.
The job that was rejected before being started is not submitted to the dataset.

Similarity Measure In order to perform job clustering it is necessary to have
a measure of similarity between two different jobs.

There are several existing ways to calculate similarity for sequences. Among
the most commonly used ones, the Levenshtein distance, the Jaccard similarity,
and the longest similar subsequence can all be used in the DDM as a mea-
sure of similarity between two sequences of events. The Levenshtein distance
(also called “the minimum edit distance”) is calculated as the minimum number
of atomic operations needed to be performed on an entity in order to trans-
form it into the other entity. The longest similar subsequence metric can be
useful in some settings, where the order of actions is very strict and limited,
but is weak in the general case, because the small changes in the middle of a
sequence will severely lower the total similarity score. We opted to use the Jac-
card similarity because it is one of the most general similarity metrics that is
applicable to sequences. The Jaccard metric allows to have variations in any
part of a sequence, unlike the longest subsequence metric, but can be calculated
more efficiently than the Levenshtein distance. The Jaccard similarity is usu-
ally used to define the similarity of two sets. In a general case, it is defined as

the intersection of two sets divided by the union of two sets: J(A,B) = |A∩B|
|A∪B| .

The similarity metric shows the percentage of items that are the same in two
sets to all items in both sets. It returns 1, when both sets are the same, and
0, when there is not a single common item between them. When the Jaccard
similarity is used to define the similarity of sequences of variable length with
changing token order, the sequence should be transformed into a set [6]. This is
commonly done by transforming a sequence into a set of k-shingles or k-grams.
A k-shingle is any set of continuous tokens of a sequence. For example, for
the sequence “AirbusGroup” and letters taken as tokens, a set of all 3-shingles
is {“Air”, “irb”, “rbu”, “bus”, “usG”, “sGr”, “Gro”, “rou”, “oup”}. Splitting the
sequence on k-shingles in order to apply set similarity measures has a number of

6 Viktoriya Degeler, Richard French, and Kevin Jones

useful properties, including the ability to cope with small insertions or changes
of symbols in random places of a sequence. It is also easy to extend the notion
to find a mutual similarity of more than two entities at the same time.

One more important advantage of Jaccard similarity is that it splits the
sequence onto subsequences, so it is possible to re-use them to calculate the
similarity and danger score of subsequences as well as full sequences. This is
very helpful when trying to find the most dangerous subsequence within a se-
quence. With Levenshtein distance every subsequence would have to be analysed
separately, therefore decreasing the total performance of the algorithm.

Clustering The next step after the similarity between any two entities can be
found, is to cluster the set of entities (jobs, or event sequences, in our case) into
groups with similar objects. Ideally, each cluster should contain a single type of
a job, including small variations that a job can have in its events.

In the DDM we use distance-based hierarchical clustering, with the usage of
mean points as representatives of a cluster. We define a representative sequence
of a cluster as a mean point, i.e. a point that has the maximum similarity to
all other points of the cluster argmaxc∈C(

∑
i∈C sim(c, i) ∗Wi). For distance-

based clustering there is a threshold MINSIM , and we require the similarity
of all points within a cluster with its mean point to have at least this amount of
similarity: ∀i ∈ C : sim(c, i) ≥MINSIM .

Clustering happens sequentially, i.e. we regard one point at a time and add
it to the closest cluster (recalculating the mean point if necessary) or create a
new cluster if no sufficiently similar cluster is found. The process is the same for
initial training and for the production phase, when finished jobs are added one
by one. If recalculation of the mean point leads to the cluster no longer satisfying
distance requirements, we split the cluster into several smaller ones.

Cluster Parameters After we have obtained job clusters, we can calculate
the parameters of any cluster or any job. For every cluster we calculate the
frequency rate (or weight), the anomaly score, the danger score, and the final
threat score. In order to calculate the anomaly score of a job, we find the cluster
that it belongs to (or create a new one if there is no cluster that is sufficiently
similar to a job), and use the anomaly score of this cluster. Conventionally, the
algorithms with similar functionality are called ‘anomaly detection’. However,
here we talk about ‘anomaly score calculation’, due to the fact that we are not
interested in boolean classification of job instances as anomaly vs. non-anomaly,
but rather in a quantifiable score of how anomalous the job is.

Weight (W) or Frequency Rate (FR) values show, how common the jobs
of this cluster are. The weight or the frequency rate can be used interchangeably,
with only a small difference in calculation formulas. The weight shows the abso-
lute amount of times the jobs of this cluster were seen within regarded timeframe
or within a training set. Frequency rate shows the percentage of times the jobs
are a part of this cluster in comparison to the total number of jobs. As can be
easily seen, frequency rate can be obtained by dividing the weight of the cluster
by the total weight of all clusters: FRi = Wi/

∑
c∈C Wc. Frequency rate is a

Threat Detection in Cyber-Physical Systems 7

slightly more adaptable value than weight, when the total amount of jobs over
time can vary. However, in certain situations weight can be more preferable, for
example, if the total number of jobs within our timeframe is small, and we want
to limit the absolute number of jobs for a job to be regarded as non-anomalous.

Anomaly Score (AS) simply represents how anomalous is the job or the
cluster. The score is always in the range between and including 0 and 1, where
1 represents that such a job is an absolute anomaly and has never before been
seen in the training set, and 0 represents that a job is completely common.
From a naive point of view, the AS of a cluster can be seen as being fully
dependent on the frequency rate of a cluster, i.e. the higher its frequency, the
lower the anomaly score. However, while the frequency rate of a cluster is indeed
an important factor in determining the AS, it is not the only factor, as similarity
to other clusters and their frequency rates should also be taken into account. For
example, two cluster with the same frequency rate will receive different anomaly
scores, if the first one has subsequences that are similar to other clusters, and the
second one has completely unique sequences. It can be the case that a cluster
with lower frequency rate will receive a lower anomaly score, if it has many
similar neighbouring clusters that are sufficiently frequent themselves.

Another question is which clusters to regard as completely non-anomalous
(AS = 0.0). We introduce a frequency rate threshold. It should be chosen to cover
the least frequent “normal” job. E.g. if there are three clusters that represent
normal activities, one with frequency rate of 0.5, another one with 0.2, and the
third one with 0.3, the threshold should be chosen as 0.2. It is also wise to
lower the threshold a bit more (e.g. by 10-15%) to allow for random variations
in actual real-time frequencies, therefore finally keeping it at around 0.18. We
normalize the frequency rate to obtain the percentage of FR below threshold.
The normalized frequency rate (NFR) can be calculated irrespectively of whether
original values are represented as absolute weights (W) or as relative frequency
rates (FR), however, the threshold should be given in the same units. In case
the weight Wi of a cluster is given, the threshold should be given as maximum
weight MW , and the normalized frequency rate is calculated as

NFRi = 1− max(MW −Wi, 0)

MW

In case the frequency rate FRi of a cluster is given, the threshold should be given
as maximum frequency MF , and the normalized frequency rate is calculated as

NFRi = 1− max(MF − FRi, 0)

MF

NFR represents only the frequency of sequences from the cluster itself. How-
ever, when calculating the anomaly score we also want to take into account total
occurrences of similar subsequences, even when these subsequences are part of se-
quences in other clusters. The rate we take from other clusters should be reduced
proportionally to the similarity between these clusters. Therefore we introduce
extended normalized frequency rate ENFRc(C) that is calculated for a cluster
given a set of clusters for comparison:

8 Viktoriya Degeler, Richard French, and Kevin Jones

ENFRc(RC) =

 (1− Sim(x, c) ∗NRFx) ∗ ENFRc(RC\x) +
Sim(x, c) ∗NRFx, for any x ∈ RC

0, if RC = ∅

Using the ENFR, we calculate the anomaly score:

ASc = 1− ENFRc(C)

Note, that it is not necessary to regard the NFRc of a cluster c separately, if
the cluster itself is included into the set C. Because Sim(c, c) = 1, the frequency
rate of the cluster itself will be taken fully during the calculations.

In practice, the anomaly score of 1.0 cannot be obtained during training
phase, because during training phase a sequence is immediately added to the
set of sequences, therefore it has some non-zero weight even when seen for the
first time. However, during the actual monitoring phase, when a new job is sent
to the DDM for verification, it can have anomaly score equal to 1.0. This can
be obtained if the new job is not only seen for the first time, but also does not
contain any subsequences that were seen previously. Once the fully anomalous
job is executed and completed, it will be added to the dataset, and “learned” by
the DDM. Therefore the anomaly score of a similar job next time will be lower.
The anomaly score of 0.0 can be obtained during training or verification phases
for all clusters that have normalized frequency rate of 1.0.

Danger Score (DS) is the metric that shows, how many danger signals
were detected during the execution of these jobs, how severe they were, and how
likely it is that they were caused by the jobs from the cluster, and not some other
jobs. A danger score of a cluster increases when active jobs from this cluster are
associated with environmental danger signals. Each danger signal has a severity
value. This value gets distributed among active jobs that may be responsible
for the signal, depending on the type of the signal and job parameters, such
as their anomaly score and previously associated danger signals. More on the
distribution of the danger signal score is explained in Section 3.2.

A danger signal chunk dst+1 that gets assigned to a cluster i during step t+1
is always in the range of 0.0-1.0. The increase of the total danger score happens
according to the following formula:

DS
(i)
t+1 = DS

(i)
t + (1−DS(i)

t) ∗ dst+1

Threat Score (TS) represents the total potential perceived threat of exe-
cuting a sequence of a cluster. It is a combination of how anomalous the sequence
is (AS) and how often and severe danger signals related to the sequence are (DS).
In principle, threat score of a cluster can be any function of its anomaly score
and danger score, TSc = F (ASc, DSc), as long as the following conditions hold:

1. TSc takes values in the range of 0.0− 1.0;
2. TSc increases monotonously when ASc increases;
3. TSc increases monotonously when DSc increases.

Currently we use linear formula TSc = α ∗ ASc + (1 − α) ∗ DSc. However,
other functions can be taken into consideration in the future.

Threat Detection in Cyber-Physical Systems 9

3.2 Danger Signals

Danger signals can include anything that happens in the environment not ac-
cordingly to expectations or that harms the environment or the system. The
origins and amount of information given by the signals can differ. Signals can
be created by AGVs themselves (any error during execution can be a reason for
such a signal) or the AGV controller (e.g. if an AGV stops responding). But one
of the most reliable methods to obtain the information about the dangerous ac-
tivity is an independent Facility Monitor. It should have the information about
the goals of the jobs, their preconditions and effects, and general rules of the
environment (e.g. “location Z25 is a cargo delivery point”). For some signal it
is possible to pinpoint exactly the location and the cause of it, while for others
such information may be unavailable, requiring the DDM to check all possible
jobs in progress. When a danger signal is detected, it gets assigned to active jobs
accordingly to internal calculation of probability of this particular job being the
cause of the danger. This depends on a type of the danger signal and on an
anomaly score of active jobs.

Danger signals have two parameters: type and severity. Severity is a numeri-
cal value that represents the expected harmful potential of the signal. For critical
danger signals with high severity, a single signal is enough to cause a job to be
stopped. For minor danger signals, only sustained repetition of them for the same
jobs again and again will cause these jobs to be regarded as threatening. Possi-
ble danger types that we expect for the robotic manufacturing facility include:
a wrong action performed by a robot, a robot stops responding, or responds er-
ratically, goods disappearing from collection or delivery points; a foreign object
is detected on one of the locations, or a general danger alarm of unknown origin.

Every danger signal gets distributed among jobs that may have caused it.
The exact distribution function varies depending on the type of the signal. I.e.
if a robot stops responding, the job that it was executing at the moment is
regarded as the main candidate. For a general danger alarm all jobs are regarded
as candidates. For a signal that is detected for a particular location, robots are
regarded as likely candidates in proportion to their distance to this location.
For all danger types, the distribution is further modified by the threat score of
potential candidates. A job with higher anomaly score and more danger signals
associated with it previously, will receive a higher chunk of the danger signal.

3.3 Active Jobs Manager

Main goals of the Active Jobs Manager (AJM) is to verify jobs, to keep the record
of jobs that are currently being executed and to track their successful execution.
In the presence of danger signals, the task of the AJM is to find out which active
jobs may be associated with this signal, and determine if their threat level is
enough to issue a command to stop them and forbid similar jobs in the future.
The AJM works in real-time. When a new job is created by the AGVC, it is first
sent for verification to the AJM. The AJM either approves or rejects it, based on
its knowledge of previous harmful activities. If a job is rejected, the dangerous

10 Viktoriya Degeler, Richard French, and Kevin Jones

subsequence within the job is sent back as a reason for rejection. The AGVC can
then try to recreate the job, to fulfill the goal using a different plan of execution
that avoids this subsequence. If a job is approved, the DDM adds it to the list
of active jobs. When any job event is completed by an AGV, the AGVC sends a
confirmation to the DDM, so the DDM always knows at which state the job is.
If a danger signal is received by the DDM, the AJM applies it to related active
jobs accordingly to rules of danger score distribution. After this is done, a new
verification is done to affected jobs, in order to decide if they should be stopped.
If this is the case, the DDM will send a stop command to the AGV Controller.

4 Evaluation

We performed a number of experiments to assess the approach in terms of dan-
ger detection. The experiments are based on a simulated factory floor with three
AGVs operating simultaneously. The factory floor has several collection and
delivery points. As a first step, we create a training set by generating two thou-
sand jobs to collect at a random collection point and deliver to a random delivery
point. This dataset represents a set of “normal activities”. Then we run the sys-
tem in “production mode”, where we generate one thousand jobs in a similar
fashion, but with two additions. The first addition is the addition of new legiti-
mate behaviors. This is done by defining a new collection point or a new delivery
point. Such activities are expected to have high anomaly score, due to a robot
performing previously unseen sequences of actions, but lead to intended results
that can be verified by the Facility Monitor. The second addition to jobs is the
addition of “bad jobs”. We assume that an instance of the C&C got compro-
mised, and sends a request to a robot to deliver goods to a wrong place that
is not intended, where the goods can be collected by attackers. Due to the fact
that goods disappear from the factory floor without arriving to the intended
destination, the Facility Monitor raises an alarm and creates a danger signal as
soon as it notices that goods have disappeared. However, since the DDM does
not know which new locations are intended and which are not, it has to reason as
described in Section 3, by distributing the Danger Signal among related jobs. If
the threat score (TS) of a job reaches a predefined threshold, the job is stopped
and is marked as dangerous. Further similar jobs are rejected. For every set of
parameters we create one hundred randomized system runs, each consisting of
2000 jobs training set and 1000 jobs verification set, and take the average results.

The decisions of the DDM depend on how the threat score is calculated and
treated. Therefore, as the first experiment we look at the parameter α in the
equation TSc = α∗ASc +(1−α)∗DSc. We vary α in the range of 0.0−1.0 with
0.05 step. For the purpose of this experiment we fixed the TS threshold at 0.55,
i.e. any job with calculated TS higher than 0.55 is immediately stopped or is
rejected from the beginning. We calculate the acceptance percentage for “normal
jobs” (i.e. jobs that have collection and delivery points available in the training
set), for “new jobs” (i.e. legitimate jobs, but with previously unseen collection
or delivery points), and for “bad jobs” (i.e. jobs with a previously unseen and

Threat Detection in Cyber-Physical Systems 11

(a) Acceptance rate based on α in TSc =
α ∗ASc + (1 − α) ∗DSc.

(b) Acceptance rate based on TS threshold
for job rejection.

Fig. 3: Acceptance rates depending on parameters

wrong delivery zone that cause disappearance of goods). Results are shown in
Figure 3a. Note that with α = 0.0 anomaly score plays no role in the decision
whatsoever, only danger signals matter. Danger signals appear closely associated
with dangerous jobs, therefore most “bad” dangerous jobs are rejected, with
acceptance rate staying below 0.1 up for all α < 0.55. However, because we do
not take any anomaly score into account, and only look at similarity of jobs to the
ones associated with danger signals, normal jobs become associated with danger
signals as often as new or bad jobs. This leads to a high rate of rejection for
normal jobs (“false positives”). With increasing α, the danger signal distribution
starts to take into account the anomaly value, therefore normal jobs become
less and less likely to be associated with danger signals, and their acceptance
rate increases rapidly, reaching values close to 1.0 at α > 0.4. We see the best
results with α in the range of 0.4 − 0.5, with very high acceptance of normal
and new legitimate jobs, but very low acceptance of bad jobs (due to remaining
importance of danger signals). However, when α increases past 0.5, we see a
dramatic drop in acceptance of new jobs (due to the fact that the anomaly
score is now very important, but the existence or absence of danger signals
is not important). Bad jobs become more accepted as well, reaching the same
percentage of acceptance as new jobs for α > 0.75. This is due to anomaly values
of new legitimate jobs and new bad jobs being on the same level, and lack of
importance of danger signals to discriminate legitimate and bad behavior.

The TS threshold (TST) is also an important parameter, therefore as our
second experiment we vary the TST in the range of 0.0−1.0, but now with fixed
α = 0.5. The results can be seen in Figure 3b. We can see that with TST = 0.0
all jobs get rejected immediately, but with increasing TST the “normal” jobs
increase their acceptance rate rapidly, with about 60% of normal jobs being
accepted with TST as low as 0.2. This is due to threat score for normal jobs
being usually very low, due to low anomaly score as well as low to none relation to
danger signals. However, with low TST new legitimate jobs are largely rejected,
due to anomaly score alone being enough to breach the threshold. Values around

12 Viktoriya Degeler, Richard French, and Kevin Jones

0.4 − 0.5 produce the best results: most normal and new jobs have the threat
score lower than this threshold, and are therefore accepted, but the combination
of anomaly score and related danger score leads to most bad jobs breaching
the threshold and being successfully identified and rejected. With increasing the
TST beyond 0.5 results worsen, as bad jobs become more and more accepted as
well. It should be noted, however, that even with TST = 0.9 about 30% of bad
jobs are still identified and rejected.

5 Conclusions

This paper presents an approach for intelligent detection of and response to
threatening activities in Cyber-Physical Systems. The system is able to recognize
anomalous activities and environmental dangerous events, and relate them in
order to understand, which jobs may have been the cause of the danger. Such
jobs can be stopped and prevented in the future. The system, presented here,
demonstrates the concept of an intelligent self-aware manufacturing facility.

It is important to mention that the Danger Detection Module is implemented
in a domain-independent way. Detecting anomalies and dangerous activities in
sequences of events is a general topic that can be applied to other settings as
well as in safeguarding robotic manufacturing facilities. The Danger Detection
Module can be applicable in such settings as incident detection in network traffic,
analysis of system calls, safety of smart homes, etc.

References

1. Cani, A., Gaudesi, M., Sanchez, E., Squillero, G., Tonda, A.: Towards automated
malware creation: code generation and code integration. In: Proceedings of the 29th
Annual ACM Symposium on Applied Computing. pp. 157–160. ACM (2014)

2. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a
computer. In: 2012 IEEE Symposium on Security and Privacy. pp. 202–202. IEEE
Computer Society (1994)

3. fr Sicherheit in der Informationstechnik (BSI), B.: Die lage der it-sicherheit
in deutschland 2014 (2014), https://www.bsi.bund.de/SharedDocs/

Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__

blob=publicationFile
4. Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Im-

mune system approaches to intrusion detection–a review. Natural computing 6(4),
413–466 (2007)

5. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy, IEEE
9(3), 49–51 (2011)

6. Manber, U., et al.: Finding similar files in a large file system. In: Usenix Winter.
vol. 94, pp. 1–10 (1994)

7. Matzinger, P.: Tolerance, danger, and the extended family. Annual review of im-
munology 12(1), 991–1045 (1994)

8. Petit, J., Shladover, S.: Potential cyberattacks on automated vehicles. Intelligent
Transportation Systems, IEEE Transactions on 16(2), 546–556 (April 2015)

