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Abstract—One of the most important open research ques-
tions in cyber security is the ability of the system to intelligently
detect new previously unseen threats, and react to them in such
a way that minimizes the damage and potentially removes
the threat altogether. This paper presents a concept of an
intrusion detection system based on anomaly detection and
danger signals recognition. The system monitors events in the
environment, constructs patterns of event sequences, and finds
strange and anomalous patterns. If any dangerous symptoms
are detected in the environment, the system matches them to the
timeline of events and finds a pattern that may have caused the
symptoms. It then triggers the defence mechanism and notifies
other instances of the system about dangerous event sequences.

I. INTRODUCTION

Conventional protection against existing malware includes
checking for known signatures of a virus in predefined
places. While the conventional approach should undeniably
be used to safeguard against known hazards, it does not
provide protection against zero-day vulnerabilities, i.e. new
attacks that have not been revealed yet, and do not have
a released security patch yet. Their signature is not yet
known to anti-virus programs, therefore the attack cannot
be conclusively identified. The lack of self-learning and
adaptation abilities of such systems also makes them reliant
on external updates in order to keep signature knowledge
base up to date.

One of the most important open research questions in
cyber security is the ability of the system to intelligently
detect new previously unseen threats, and react to them
in such a way that minimizes the damage and potentially
removes the threat altogether. Therefore, different artificial
intelligence mechanisms, such as anomaly detection are
widely used for this purpose. It is important, however,
that the detection mechanisms should keep both types of
mistakes (false negative and false positive) at minimum. If
an existing attack is not detected (false negative), this allows
the attacker to cause damage to the system unharmed. But if
a legitimate behavior is detected as an attack (false positive),
the system will try to stop the legitimate behavior, which in
some cases can cause comparable amount of economical and
operational damage to a non-detected genuine attack.

As shown in Figure 1, while signature-based methods
usually have low false positive rate (they do not detect
legitimate behavior as an attack), they inevitably have high
false negative rate (they do not detect many actual attacks),

due to not having attack signatures available for new attacks.
Anomaly detection methods, on the other hand, have lower
rate of false negatives, as they can detect even new attacks,
but their false positives rate is largely increased, because
any previously unseen behavior can be marked as an attack,
even if it is legitimate.

Figure 1. Signature-based vs. anomaly based methods of intrusion
detection.

A system that features a full range of measures to identify
and prevent attacks, and to recover from potential damage,
is usually called self-healing. A good definition of a self-
healing system is given in [1]: “By self-healing systems,
we understand this to be a resilient system able to carry
out normal activities even when under attack; a system that
can identify deviation from a ‘normal’ system and apply
a corrective measure; a system that can identify intruders
(parasites – external elements to the ‘normal’ network) and
understand their impact, and a system that can reverse from
new states to the ‘normal state’.”

This paper presents a proposed concept of an intrusion
detection system based on anomaly detection and danger
signals recognition. The system monitors events in the en-
vironment, constructs patterns of event sequences, and finds
strange and anomalous patterns. If any dangerous symptoms
are detected in the environment, the system matches them
to the timeline of events and finds a pattern that may have
caused the symptoms. The system then triggers the defence
mechanism and notifies other instances of the system about
dangerous event sequences.



II. ARTIFICIAL IMMUNE SYSTEMS

Fuzzy intelligent mechanisms can be used to provide some
level of protection against unseen zero-day attacks. Some
investigation on this topic is done in the area of artificial
immune systems (AIS) [2]. AIS looks at how biological
mechanisms fight with unknown threats, e.g. an organism
fights a new virus, and mimics it in a computer system.
There are several biologically-inspired approaches that AIS
state of the art research proposes. The most common one
is a negative selection approach that is based on anomaly
detection, another one is based on danger theory.

A. Negative Selection

Detection of anomalies in negative selection is usually
called “non-self” detection [3], [4]. This is due to re-
semblance of the algorithm to how a biological organism
recognises whether a cell is its own, or a foreign one.
The main idea is to construct a set of “non-self” entities
that do not pass a similarity test with any of pre-existing
“self” entities. If a new entity is matched with any of these
“non-self” entities, it is rejected as foreign. D’haeseleer [5]
points out that negative selection method has properties
of a successful immune system. The detection scheme is
inherently distributable, every detector comparison can be
done on a different host. Hosts can also have their own set
of detectors. Negative selection requires no prior knowledge
of intrusions, due to being in its core a general anomaly
detection method. It is self-learning, as a set of detectors
naturally evolves over time, when obsolete detectors die and
new ones are obtained from the current event traffic. The
set of detectors and the set of “self” entities are mutually
protective: a change in one of them can be detected by
looking at the other set.

B. Positive Selection

Similarly to negative selection, positive selection approach
reduces the algorithm by one step, and instead of matching
a new entity with a constructed “non-self” entity-set, it
matches it with pre-existing “self” set, and rejects if no
match is found. Negative selection is more widespread in the
research of anomaly detection than positive selection. But
some experiments suggest that these two approaches have
similar performance. Dasgupta et al. [6] performed a series
of experiments by using negative and positive selection
techniques on the same data sets. Moreover, they examined
difference in performance on an original data set and a
reduced one, in order to understand the influence of informa-
tion loss during detection phase. The study concludes that
although both techniques produced similar results, further
experiments need to be conducted in order to determine
quantitative performance. In practice, the choice of positive
versus negative selection approach comes down to which set
(self or non-self) can be represented more concisely.

C. Negative and Positive Selection Limitations

The problem of non-self based intrusion detection mech-
anisms is that they bear a great false positive rate, as they
trigger on any previously unseen information and behavior,
whether it is legitimate or not. In some settings, such as
fraud detection in banking systems, such approach leads to
great results, because it can be reasonably expected that
”self” detector cover all types of legitimate behavior and
any anomaly (”non-self”) is therefore a fraud. However,
in network systems and many other types of systems, we
can expect legitimate behavior to change over time, or to
have some rare anomalous events that do not constitute
an attack. Non-self negative selection for such intrusion
detection produces great number of false positives whenever
legitimate behavior changes. Therefore negative selection
should be used on its own only in those systems, where
no change of behavior over time is expected.

Another problem that was identified with negative selec-
tion is space scalability. Unlike many other anomaly detec-
tion methods that can extract useful features from a set of
detectors, and only need to keep them, the negative selection
approach needs to represent all possible detectors in explicit
form. Kim and Bentley [7] performed experiments with a
dataset of TCP connections. From every TCP connection
they extracted a set of meaningful parameters that was used
to encode detectors: connection identifiers, such as initiator’s
address and port and receiver’s address and port; whether
known vulnerabilities exist on either of connecting hosts;
handshaking results; traffic intensity, etc. In total there were
33 different fields. Their experimentation showed that for
such encoding of a detector, to achieve 80% detection rate
they would need 6, 4 ∗ 108 detectors.

D. Danger theory

In contrast to the negative selection approach, where every
unknown entity raises an alarm, in danger theory (DT)
approach immune responses are triggered by danger signals
rather than just presence of non-self objects [8]. Any entities
are allowed to exist in the body until harmful signals are
received. If a harmful activity (e.g. cell death) is detected,
the immune response is triggered, attacking either all foreign
entities, or all entities locally, depending on the severity of
the danger signal. Burgess [9] was among the first who
proposed to use the biologically-inspired danger theory to
detect and react on harmful activity in computer systems.
However any harmful activity was considered, including
random software and hardware errors. For network com-
munication, signals such as packet-loss [10] are proposed to
be defined as danger signals. Sarafijanovic and Boudec [10]
provide a detailed description of a possible AIS system that
is based on negative selection and danger signals. Their
system is designed for a network routing setting. Every host
has a separate detection system, which learns on its own, but
has a possibility to receive events with learned information



from other neighboring nodes. Ou and Ou [11] describe
the profiling of danger signals used to determine the threat
profile of network packets and system calls. Danger signals
may be composed of excessive CPU usage, memory load
at the host, bandwidth saturation, high connection number
of the host, etc. According to a threat profile, network
packets receive an estimation of three parameters: attack
severity, certainty, and the length of attacking time. They
define an antigen as “an information vector extracted from
network packet”. Usually, antigens are binary strings, which
include parameters, extracted from the IP packets, such
as IP address, port number, protocol types, etc. Similarly,
antigens can be constructed for system calls, or any other
source of events. Aickelin et al. [12], [13] showed how
Danger Theory establishes a link between Artificial Immune
Systems and Intrusion Detection Systems. Several other
works also investigated usage of danger theory in intrusion
detection, proposing different variants of danger theory
inspired AIS algorithms [14], [15], [16]. However, most
works lack validation on proper real or realistic systems,
and the approach that shows the best performance is yet to
be found.

Danger signal signifies damage to the system, but not
necessarily shows the origins of this damage and which
entities are to blame. Therefore, the artificial immune system
must decide, which entities may have caused this danger
signal, and how to protect the system from further damage.

III. DANGER THEORY FOR INTRUSION DETECTION

We propose to investigate an approach to create an intru-
sion detection self-healing system based on danger theory.
We calculate an anomaly score for every event in the system.
But being anomalous is not enough to trigger a response, as
this may be a legitimate new behavior. There should be a
known (or a highly probable) danger for the response to be
triggered. As soon as the danger is known, the timeline of
events is checked in order to find out either an anomalous
sequence of events, a sequence that bears known danger
risks, or a combination of the two. The corresponding
defence response is then triggered, and the information about
newly found dangerous sequence is sent to other machines
in the network.

Every event has three computed values. The type of
event (ET), based on predefined types, or automated events
clustering. This may also be in a form of similarity mea-
sure between two events. The anomaly value (AV), how
anomalous the event is, based on non-self computations. The
danger value (DV), which increases when any strange and
potentially dangerous signals are associated with this event.

These three values are combined together in order to
calculate the total threat value (TV), the perceived potential
of this event to cause damage or to be involved in a sequence
of events that can cause damage to the system.

An instance of the system is running on every machine
in the network and collects information about events. De-
pending on the purpose of the system, events can include
network packets, system calls, CPU activity, etc. Instances
are connected with each other, so it is possible to share
information about detected dangers to other hosts.

There are three main system flows that are originated
depending on the external trigger. When a new event is
detected, it should be added to the timeline, which then
should be checked for dangerous patterns, etc. When a
danger signal is detected, the system must decide if any
event pattern can be related to this danger signal and act
accordingly. When a warning arrives from another host that
carries information about a danger signal and related dan-
gerous sequence, a host’s own timeline should be checked to
verify that it does not contain similar dangerous sequences.

A. New event analysis

Figure 2. New event

The processing flow for registering a new event is de-
scribed in Figure 2. The monitoring system is deployed
to each machine in the network, and monitors all events.
Possible events to monitor can include: system calls, network
packets, port usage, emails, URL browsing, file downloads,
memory usage, disk activity, etc. Algorithm for detecting
events changes, depending on the network profile, and
evolves with time. Event features are likely to change
over time as well. For example, while originally botnets
often used particular ports to establish connection with their
peers [17], this served as an easy way to identify anomalous
behavior. Therefore, increasingly botnets use common ports
for communication, such as port 80 [18].

Every event is checked by the event classification system,
to define its type and feature parameters. For a matching
algorithm there is a possibility to match event on several
levels to avoid unnecessary load. For example, we can define
a “file change” event type, which matches any change in
any file. On the highest level, two different changes in two
different files are regarded as the same event. However,



during the investigation or more fine-grained matching, if
there is a need to check, which files exactly were changed,
the next level of matching checks the file name, extension,
path, etc., and only considers events as similar if these
parameters match. The third level may include the nature of
the change itself, so the old version and the new version of
both files should be compared to identify the exact changes.

Based on event analysis, its parameters are computed,
such as its type, anomaly value and danger value. It should
be noted that numerous anomaly detection algorithms pro-
vide different approaches to define the anomaly value of
an event. Depending on the chosen approach, the calcu-
lated anomaly score can differ considerably, which has
consequences on further reasoning when finding dangerous
events. The event is then stored into a database for historical
reference together with this enriched information.

A timeline of events is kept in real-time, and is updated
with new events as soon as they are analysed. The timeline
should only contain an event type or certain event charac-
teristics, not the actual unique events, in order to be used
in event sequence matching. Similar to event classification,
a timeline of events is also analyzed, and related event
sequences are extracted and classified. Classification system
gets updated with new events, possibly changing classifica-
tion when event profiles change. This need not happen in real
time, and may happen as a batch job that runs periodically.

B. Danger signal processing

Figure 3. Danger signal

Reaction on a danger signal is described in Figure 3.
A danger signal is a sign to the system that something

adverse has happened, which either caused damage to the
system or has a high potential to cause it.

We investigate two possibilities for the system to receive
a danger signal. The first is manual, i.e. a system’s operator
or manager manually notifies the system of observed danger
symptoms and triggers defence protocols. The second is
automatic, which includes detecting a certain event or a
combination of events that is predefined to be intrinsically
dangerous. For example, such signals can be: network packet
loss, anomalous packets, usage of strange ports, anomalous

memory or CPU usage, inappropriate disk activity, inap-
propriate user actions. These symptoms can be of different
severity, and may be regarded possibly including known
relations of such symptoms to previous timeline of events.
The system immediately triggers the danger processing
mode when it detects such events. It is possible that a
sequence of events, each being an admissible event but with
a certain danger value, together constitute a greater danger,
which exceeds the required threat threshold. When a danger
signal is obtained, the system knows that there is an attack,
and tries to find its origins and prevent it from spreading.

As an example of what the system’s defence reaction can
be, when a dangerous trace is found: the machine can be
prevented to communicate with the network, or to execute
certain system calls which may result in further damage (i.e.
disk overwriting, or sending commands to PLCs, as those
that resulted in centrifuges failure in Stuxnet virus).

For partial sequence matching on other machines, the min-
imal reaction (to avoid overreacting) is to forbid executing
only those actions, that will further match the dangerous
sequence, but allow execution of all other commands, while
creating an alert of possible danger.

Every dangerous sequence is also added to the database
of identified dangerous sequences for future reference.

C. Warning signal processing

Receiving a warning signal is described in Figure 4.

Figure 4. Warning signal

A warning signal comes from a network of trusted
machines. If some machine has detected an attack and
identified (possibly) responsible sequences of events, these
sequences are sent to all other machines in the network.
They check their own timeline to identify, if they have
experienced similar events or a certain prefix of the sequence
of events, because an attack can be in earlier stages. Also,
the variability of event matching should be greater on a
different machine, due to the fact that the same infection may
come from a different source or have different parameters.
For partial sequence matching of sequences coming from
other machines, the minimal reaction (to avoid overreacting)
can be to forbid executing only those actions that will
further match the dangerous sequence, but allow execution



of all other commands, while notifying administrators of a
possible danger. It is also possible that when the timeline is
updated, it gets a match with a sequence from a database of
dangerous sequences. If there is a match of any dangerous
sequence with the timeline, a defence reaction is activated. If
there is no match, the system continues to operate normally.

IV. SCENARIO

Worms are self replicating programs. One such malware,
known as Conficker, generates a very large amount of
network traffic that overwhelms communicating devices. An
example of the chaos created by Conficker occurred in 2011
at a steel plant: On February 6, 2011, the ALSPA system
stopped. An investigation revealed that there was a Con-
ficker virus infection in all machines of the ALSPA system.
The worm spread throughout the power plant automation
network (and probably in other automation networks [...]).
The virus flooded the network with unwanted packets and
caused an instability in the communications between PLCs
and supervisory stations and freezing most of the super-
visory systems. The automation team cleaned the infected
machines, but the virus returned[19].

Let us consider a scenario that illustrates how self-healing
network intrusion detection system can automatically stop
the spread of worm malware. With the self-healing function-
ality running as part of a computer’s Operating System (OS)
scheduler, program activity is used as a source of pattern
data for an automatic danger signal generation module to
analyse. Thus, the danger signal is derived from monitoring
system performance metrics such as outgoing network traffic
and thread activity etc. The computer is connected to other
computers on a network and each computer’s OS also runs
the self-healing functionality as part of its scheduler. The
network of computers function normally and the danger
signal generation modules within the OSs build patterns
of typical activity. New software is installed, updates and
patches occur, and no danger signals are generated.

One computer becomes infected with the Conficker-like
worm. It adds e.g., Proc-X to its services and the malware
starts its mischief. As a side effect of the malware execu-
tion, outgoing network traffic increases and eventually after
time ttr, the danger signal is triggered. Over time tco, the
automatic danger signal generation module on the infected
computer correlates the pattern of program activity with
the addition of Proc-X in its services list, and broadcasts
a compact message into the network warning its peers of
the problem. Upon receiving this message, each computer
takes time tim to immunise itself by halting processor cycle
time given to Proc-X execution. As the worm takes time
tinf to infect a computer, arguably it will take time k.tinf
to infect the whole network, for some value k. Therefore,
if ttr + tco + tim < k.tinf then propagation of the worm
will be halted as computers on the network take action and
immunise themselves. This is illustrated in Figure 5.

Figure 5. The self-healing network intrusion detection system preventing
spread of worm malware over time. The dotted line indicates the boundary
at which the worm is stopped as all computers are immunised against it.

V. CONCLUSIONS

In this paper, we presented a concept of self-healing
network intrusion detection system based on danger theory.
Unlike traditional signature-based methods, this approach
can defend from previously unknown attacks. Also, unlike
pure anomaly detection methods that react on any new
behavior in the system, this approach allows to distinguish
a new legitimate behavior from a new dangerous behavior,
and only react on dangerous ones. This allows to drasti-
cally reduce the number of false positive alarms in highly-
dynamic systems, where new behaviors emerge constantly.
Dangerous events are shared over the network, allowing to
quickly propagate defence reaction to other servers, and stop
the attack on other machines at its earlier stages.
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