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ABSTRACT

Sensory data has a profound influence on the quality of

detected events in a distributed complex event processing

system (DCEP). Since each sensor’s status is not stable at

runtime, a single sensing assignment is often not enough

to fulfill the consumer’s quality requirements. In this pa-

per, we study in the context of AQuA-CEP the problem

of dynamic quality monitoring and adaptation of com-

plex event processing by dynamic integration of suitable

data sources. To support this, in AQuA-CEP, queries to

detect complex events are supplemented with consumer-

definable quality policies that are evaluated and used to

autonomously select (or even configure) suitable data

sources of the sensing infrastructure. In addition, we stud-

ied different forms of expressing quality policies and ana-

lyzed how it affects the quality monitoring process. Var-

ious modes of evaluating and applying quality-related

adaptations and their impacts on correlation efficiency are

addressed, too.We assessed the performance of AQuA-CEP

in IoT scenarios by utilizing the notion of the quality

policy alongside the query processing adaptation using

knowledge derived from quality monitoring. The results

show that AQuA-CEP can improve the performance of

DCEP systems in terms of the quality of results while

fulfilling the consumer’s quality requirements. Quality-

based adaptation can also increase the network’s lifetime

by optimizing the sensor’s energy consumption due to

efficient data source selection.

CCS Concepts: • Computer systems organization→
Real-time systems; • Networks→ Network dynam-

ics; • Software and its engineering→Publish-subscribe

/ event-based architectures.
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1 INTRODUCTION

Reacting to varying situations is a fundamental require-

ment in the Internet of Things (IoT) scenarios like traffic

monitoring, healthcare systems, and smart homes. Dis-

tributed Complex Event Processing (DCEP) is a widely

employed paradigm to support efficient situation detec-

tion based on a variety of distinct sensors and a step-wise

transformation from primary events to situations of in-

terest for consumers in the form of complex events. The
resulting quality usually expressed in the form of Quality

of Service (QoS) and Quality of Results (QoR), highly de-

pends on the origin of primary events. Especially in IoT

scenarios in which the primary events are generated often

based on distributed sensor readings from the environ-

ment. These sensing deployments are vulnerable to the

immense dynamicity that existed in the environment (e.g.,

availability of the sensors) and a single sensing deploy-

ment is often not enough to meet quality requirements

related to the system and its consumers.

An established solution to react properly to environ-

mental dynamics is to adapt the detection logic’s place-

ment to the available computing resources which are part

of the DCEP framework. Also, such an adaptation needs

to deal with the limitations that the allocated resources

might have during the query execution (cf. [6, 18–20, 29]).

This idea provides essential means to maintain or improve

the QoS-related measures, e.g., by reducing the imposed

end-to-end delay or regulating the bandwidth consump-

tion. On the other hand, the idea of sacrificing QoR to keep

QoS at an acceptable level can already benefit the DCEP

systems by combining these mechanisms with other run-

time approaches like load shedding techniques [26, 27].

Although influencing QoR will lead to a degradation in

consumer requirements’ satisfaction, these techniques

find it crucial to impact QoR as less as possible, e.g., by

dropping events from partial matches.

The state-of-the-art approaches decouple the detection

procedure and adaptation strategies from sensing deploy-

ment configuration and operate only based on informa-

tion existing in the design time. Such an idea limits the

system’s capabilities to react properly to dynamics in the

sensing layer, e.g., the quality of sensor readings or their

battery level. Hence, the degradation in QoR can be prop-

agated due to these limitations while the DCEP system

is not able to actively influence and prevent the conse-

quences of hardwired sensing configuration. Moreover,

even if the sensing deployment adaptation is considered

at runtime, adaptation strategies’ outcome can affect the

QoR [12]. For example, in the case of updating the data

sources from a camera to a motion detector, the motion

event’s accuracy would be degraded. In this vein, due to

attaining themost elevated quality grade in the adaptation

decisions, the inputs are mandated to have an admissi-

ble level of quality. In this regard, the input data can be
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assumed of insufficient quality if not accurate, precise,

fresh, or truthful. Events are also evaluated as inadequate

quality if they do not hold a certain level of confidence,

are received out of order, are wrongly detected, or are not

detected at all. Therefore, measuring to what extent the

consumer’s quality requirements are met should be taken

into account when applying any adaptation strategy.

In this paper, we analyze and present concepts on ex-

panding flexibility and adaptivity by proposing quality-

aware event processing to enhance QoR andQoS. In partic-

ular, AQuA-CEP is a mechanism that is designed based on

the idea of dynamically exchanging sensing deployment

concerning the demarcated requirements by the consumer

that influence how sensor data is processed. We enhance

DCEP with the concept of so-called quality policies and

corresponding quality monitoring mechanisms. Upon any

change occurring in the environment or in the sensing de-

ployment observed by our DCEP system, AQuA-CEP will

autonomously adapt the sensing deployment according to

the available sensing infrastructure, if required. It can be

performed by defining sensing configuration restrictions

(e.g., cost constraints) considering quality requirements

expressed by consumers. Consequently, an efficient sens-

ing deployment assignment is performed by a utility met-

ric concerning the defined restrictions. For more details,

AQuA-CEP provides the following contributions:

1. We provide a new representation of the quality

demands of a query in DCEP systems by propos-

ing a policy-driven specification of complex events

to boost data processing performance and more

promising utilization of IoT resources.

2. We devise how quality monitoring can be applied in

DCEP by presenting concepts allowing the dynamic

reconfiguration of appropriate data sources while

fulfilling consumer’s quality requirements.

3. We explore strategies for configuring quality mon-

itoring agents that triggers adaptation strategies

upon any quality policy violation and address the

impacts each configurationmight have on the DCEP

system’s performance in terms of QoS and QoR.

4. We evaluate the performance of our proposed mech-

anism with a real-world dataset alongside using

synthetic data to show the ability of AQuA-CEP

to boost the performance of the DCEP system in

adapting the sensing deployment while observing

consumer quality requirements.

The remainder of this paper is structured as follows. We

introduce an overview of the AQuA-CEP system model in

Section 2. We elaborate on the problem statement in Sec-

tion 3. In Section 4, the detailed overview of AQuA-CEP is

presented. The evaluation results of AQuA-CEP are exhib-

ited in Section 5. The related work is presented in Section

6. Finally, Section 7 concludes our paper and points to our

future work.

2 SYSTEM MODEL

In this section, we present the system model by intro-

ducing AQuA-CEP components, the model of IoT devices,

and the provided adaptation models.

2.1 AQuA-CEP Model

We consider a DCEP system to consist of multiple produc-
ers (e.g., mobile phones, etc.) that generate streams of pri-

mary events from the received sensory data and announce

them to the system as their advertisements. Correspond-

ingly, consumers (e.g., users, applications, services, etc.)
create situations of interest as subscriptions and submit

them to the system as continuous queries where the set

Q = {𝑞1, . . . , 𝑞𝑛} denotes the set of currently deployed

queries. Moreover, a group of brokers (i.e., CEP engines)

performs computational tasks (e.g., filter, join, etc.) by

hosting a set of operators and forward the result to the

next step that can be another operator or the consumers.

A query 𝑞𝑖 explains the logic by which a complex event

can be detected over primary event streams. It can be

performed by applying standard CEP operators like pat-

tern matching, aggregation, or windowing over primary

events or their attributes. To do so, the imposed complex

event detection logic should be applied to the specific bro-

kers for execution. In the meantime, consumers are also

allowed to specify their quality requirements as part of the

query (e.g., the location accuracy of less than one meter).

We denote the set of consumer-side constraints of all de-
ployed queries in Q by G = {𝑔1, 𝑔2, ..., 𝑔𝑘 }. A data source

is considered an eligible candidate to feed the system if it

can meet all related consumer-side constraints.

2.2 IoT Resource Model

In AQuA-CEP, sensors are the origin of data that measure

a specific phenomenon (e.g., temperature) in the environ-

ment. The sensory data sources (e.g., Bluetooth) that are

used at a given time 𝑡 form the set of active sensing deploy-

ments SD = {𝑠𝑑1, ..., 𝑠𝑑 𝑗 }. Here, 𝑠𝑑𝑖 refers to a specific

data source among all available options in the environ-

ment that can be participated reliably in the process of

sensor assignment for a deployed query. The availability

of data sources is dynamic meaning the set SD might

change over time. In the IoT environment, a data source

can be mobile (e.g., sensors embedded in a smartphone)

or stationary (e.g., a surveillance camera). We assume that

the mobility status of data sources does not negatively or

positively affect the quality of their readings.

In our scenario, IoT devices (e.g., smartphones) are inter-

connected to the system over a wireless sensor network

and demanded to register their sensing deployment in

the AQuA-CEP in advance. These devices represent the

CEP producers who generate primary event streams from

sensory data. Also, some of these devices are eligible to

issue queries acting as CEP consumers. Moreover, CEP

operators can be placed on IoT resources with sufficient

computing capabilities, e.g., on the cloud or fog nodes.

2.3 Adaptation Model

For coordinating adaptation and selecting its correct trig-

gers, AQuA-CEP needs to monitor the quality of produced

events as well as the state of the sensing infrastructure.

In this regard, we build on a sensing middleware (e.g., [1])

that offers the possibility to identify, configure, and access

the physical sensors. The system samples the quality level
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for a subset of the produced events and evaluates potential

alternative configurations.

In AQuA-CEP, the adaptation decisions need to serve

multiple objectives, e.g., the cost for fulfilling the query’s

quality policies includes the expenses for utilizing the

sensing infrastructure and completing reconfigurations.

Besides, adaptation should guarantee a level of stability

which means how often the achieved quality of the de-

tected event stays inside a predefined threshold region

after applying the adaptation strategy. It would avoid

oscillation and inessential switching costs. Also, with

AQuA-CEP we are looking to adapt the event processing

to the environmental dynamics by switching the sensing

deployment. For example, given a new sensor registered

in the network by which some of the currently running

queries would be answered. In this case, AQuA-CEP gen-

erates new query models considering the new sensor and

checks for the costs imposed by a transition from the

current sensing deployment to the new one.

3 PROBLEM STATEMENT

In this work, AQuA-CEP as a DCEP system selects suitable

data sources, i.e., a sensing deployment 𝛼 (SD) ⊂ SD,

where 𝛼 determines which sensor sources of SD will

be used. AQuA-CEP is required to meet the consumer

constraints in quality or notify consumers when no proper

sensing deployment is feasible. Furthermore, each sensor

source 𝑠𝑑𝑖 of a sensing deployment imposes a System-
Side Cost (SSC) denoted by 𝐶𝑆𝑆𝐶 (𝑠𝑑𝑖 ) as well as the cost
for performing Quality Monitoring (QM) for every query

𝑞𝑘 denoted by 𝐶𝑄𝑀 (𝑠𝑑𝑖 , 𝑞𝑘 ). 𝐶𝑆𝑆𝐶 includes those quality

metrics that aremore important for the system (i.e., energy

consumption, reusability, resource utilization, etc.). 𝐶𝑄𝑀

is the cost imposed by the configuration model of the

monitoring agent in terms of time (i.e., the delay related

to the processing events in the operator and delay for

performing the transition between sensing deployments)

and computation (i.e., the required computation resources

to conduct monitoring process).

More formally, AQuA-CEP aims to find 𝛼 which mini-

mizes the cost factors imposed by system-side costs and

quality monitoring costs subject to the quality constraints

of a consumer, i.e.,

min 𝑤𝑠

∑︁
𝑠𝑑𝑖 ∈SD

𝛼 (𝑠𝑑𝑖 )𝐶𝑆𝑆𝐶 (𝑠𝑑𝑖 )

+ 𝑤𝑞

∑︁
𝑠𝑑𝑖 ∈SD

𝛼 (𝑠𝑑𝑖 )
∑︁
𝑞𝑘 ∈Q

𝐶𝑄𝑀 (𝑠𝑑𝑖 , 𝑞𝑘 )

𝑠 .𝑡 . 𝛼 (SD) satisfies constraints in G
𝛼 (𝑠𝑑𝑖 ) = 1 iff 𝑠𝑑𝑖 is selected.

𝛼 (𝑠𝑑𝑖 ) ∈ {0, 1}

where 𝑤𝑠 indicates the weight related to system-side

costs, and 𝑤𝑞 is the weight associated with monitoring

costs.
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Figure 1. The AQuA-CEP System Design.

4 THE AQuA-CEP SYSTEM DESIGN

In Figure 1, we depict the foundational components em-

ployed in AQuA-CEP. By utilizing Software-Defined Net-

working (SDN), we make use of a controller to function

as the coordinator module and enforce a quality-driven

DCEP. This component is logically centralized but phys-

ically distributed and is in charge of exchanging con-

trol messages to synchronize the event detection proce-

dure. To do so, the controller owns the principal role in

matching the subscriptions to advertisements. A query
optimizer component receives queries submitted by con-

sumers, transforms the query description to a set of event

types, and passes the list of required data sources to the

data source assignment engine. A look-up service is trig-
gered by the engine to explore the potential candidates

for each event type in data source database, where the

currently available data sources are previously registered

themselves. The records in this database are dynamic and

can be registered or canceled at runtime.

Moreover, the controller’s functionality is enriched by

employing quality monitoring agents in the DCEP layer.

Upon any predefined situation (e.g., data source disconnec-

tion), a so-called control event is created by the responsible
agent. It notifies the controller to execute corresponding

steps as adaptation scenarios in order to maintain the

QoR. To do so, a sensing deployment performance analyzer
investigates the current state of assigned data sources us-

ing information acquired by quality monitoring agents

and updates the assignment engine to reconfigure sensing

deployment, if necessary. The performance analyzer com-

ponent also updates the data source database’s records

based on the quality monitoring results. It influences the

characteristics of data sources or their availability.

Besides, parts of our system are built on existing con-

cepts for the flexible execution of event processing oper-

ators, as proposed in TCEP [19] and CEPLESS [17]. This

allows AQuA-CEP to modify the deployment and config-

uration of operators and integrate a wide range of addi-

tional event processing engines, e.g., Apache Flink. With

such flexibility, AQuA-CEP can revise the operators’ de-

ployment and influence important QoS characteristics,

e.g., bandwidth usage.
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4.1 Quality Requirement Description

The foremost step in acquiring the consumers’ quality

expectations is the technique by which they can elabo-

rate on their requirements. Such a method must be not

only easy to use for the consumers, but also sufficiently

comprehensive to cover all aspects and flexible to fit differ-

ent types of consumers’ quality requirements. Hence, we

enable consumers to express their specific requirements

related to a given query in form of quality policy.
Quality Policy (QP). AQuA-CEP extends traditional

query specification of event processing systems by pro-

viding the possibility to specify quality requirements. A

quality policy can determine diverse qualitymetrics which

are essential for the consumers, e.g., the accuracy of de-

livered values as part of the event detection process. Also,

a quality policy might comprise threshold levels and prior-
ities that can be exploited to optimize and trade between

conflicting demands of multiple deployed queries. Accord-

ing to the type of thresholds, the quality policy can be

categorized as static or dynamic.
Quality requirements in the static type of quality poli-

cies are specified based on static thresholds as the exact

amounts stated clearly in the query, e.g., the temperature

data is requested to be delivered with an interval of 10

seconds. Only one type of quality metric can be involved

in each static quality policy. Therefore, to assess multiple

aspects of each event one expression is required in the

query definition. For each data type, the system needs to

provide a manner for the consumers to define acceptable

values. For instance, to determine the resolution of im-

ages, the consumer should have the possibility to specify

the thresholds based on PPI (i.e., pixels per inch). Thus,

the expression of quality policies for consumers will be

as easy as possible.

Some sorts of quality requirements cannot be repre-

sented by a static threshold. In those circumstances, we

define a dynamic threshold that varies depending on a

second factor which can be time or a context-related pa-

rameter. For instance, a dynamic threshold based on the

location factor looks like "the location accuracy of an ob-

ject should be less than 2meters if it is within 100meters of

a particular area. Otherwise, 10-meter accuracy would be

sufficient". By utilizing dynamic thresholds, more intricate

descriptions for quality requirements can be explainable

enhancing the flexibility of query definition. Such sort of

flexibility will improve consumer satisfaction while opti-

mizing our data analytic system to avoid utilizing more

complex procedures to fulfill quality requirements.

In order to validate the admissibility of thresholds, the

controller inspects the capability of the data sources and

adjusts their characteristics based on the requested thresh-

olds in the query, if applicable. In case there are no appro-

priate data sources available in the environment concern-

ing the quality requirements, the controller revises the

query model with the acceptable thresholds and notifies

the consumer about the new query model. Then, based on

the feedback obtained from the consumer, the controller

will deploy the newly produced query model or cancel the

query processing. On the other hand, priorities can also

be determined in the query definition. It is worth noticing

that a higher query priority will impose higher costs for

the query issuer. Such costs can be defined by the system

designer depending on the use case.

Moreover, the data source conditions and consumer’s

quality requirements might be varied over time. That is

why the quality policies have to be revised during the run-

time. For example, the consumer may need the result of a

running query very urgently, such as the current blood

pressure of a patient who may have an acute condition

with lower intervals. Therefore, the consumer needs to in-

form the system about this change by raising the query’s

priority as well as changing the sensing interval’s thresh-

old. To do so, AQuA-CEP employs a feedback process for

maintaining and updating the quality policies and renew-

ing the policies whenever the quality requirements or the

data sources’ status is altered.

4.2 Quality Monitoring

Monitoring the quality of produced results is essential

for AQuA-CEP to ensure the expressed quality require-

ments can be met and adaptation decisions are conducted

timely. In stream processing, quality observation should

be performed with the lowest possible delay. On the other

hand, the available resources for computation are usually

bounded. Thus, an event monitoring process must ponder

both of these aspects simultaneously.

4.2.1 Quality Management Agent (QMA). One of

the novel traits of AQuA-CEP is to employ QMAs that

are liable for inspecting the predefined quality metrics

over the event streams and triggering warnings in the

matter of quality degradation. On the other hand, the

utilization of QMA and where it is hosted in the data plane

might influence the quality of service. So, we defined the

concept of QMA’s configuration model and discussed how

it improves the quality in various processing stages.

4.2.2 QMA Configuration Models. As we discussed

earlier, the form of QMA configuration in the DCEP layer

can yield different results. There are two kinds of configu-

rationmodels; sequential and parallel as shown in Figure 2.
In a sequential configuration model, the events from all

producers that fulfill the requirements of a specific query

are aggregated into one joint event stream and fed into the

corresponding QMA for quality evaluation. In this case,

QMA is in charge of filtering events and allows those

events that possess the required level of quality delivered

to the respective CEP engine. The primary advantage of

this model is that the transition time (i.e., handover), that

is the time required to swap data sources, is ensured to

remain small, i.e., in the order of milliseconds. Moreover,

it is feasible joining events from two or more producers

to boost the quality by utilizing redundancy. On the other

hand, processing all events from the producers certainly

imposes considerable latency in query processing that

should be taken into account.

The parallel configuration model will impose the mini-

mum possible latency in processing since QMA analyzes

the event attributes’ quality in parallel. However, it is

only possible to connect one producer to the respective
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Figure 2. QMA Configuration Models.

operator. Thus, if the quality of the event produced by

this data source degrades, it takes time for the QMA to

trigger an alert and request the controller to link another

data source to the CEP engine that fulfills the quality re-

quirements. Such a transition surely imposes a noticeable

overhead on the event processing system. Nevertheless,

both processing and transition delay should be considered

as the major costs when the system wants to decide on

the configuration model of QMAs.

Moreover, the QMA costs for monitoring each data

source can be reviewed based on two factors; time and

computation, directly dependent on the QMA’s configura-

tion model. In terms of time, if the parallel configuration

model is chosen, the cost is the delay related to switching

between the current data source (i.e., 𝑠𝑑𝑖 ) and the next

option (i.e., 𝑠𝑑𝑙 ) as (𝐶𝑠 (𝑠𝑑𝑖 , 𝑠𝑑𝑙 , 𝑞𝑘 )). On the contrary, if the

sequential configuration model was chosen, the time over-

head is the delay caused by quality analysis (𝐶𝑎 (𝑠𝑑𝑖 , 𝑞𝑘 )).
In terms of computation costs, the overhead in both paral-

lel and sequential models is almost the same.We called this

(𝐶𝑤 (𝑠𝑑𝑖 , 𝑞𝑘 )) includes the required resources for analyzing
an event stream using sliding windows and the comput-

ing resources for the data source assignment (𝐶𝑎𝑑𝑠 (𝑞𝑘 )).
Therefore, the total cost of monitoring the data source 𝑠𝑑𝑖
using a QMA is as follows.

𝐶𝑄𝑀 (𝑠𝑑𝑖 , 𝑞𝑘 ) = 𝑤𝑠𝑒𝑞 𝐶𝑠 (𝑠𝑑𝑖 , 𝑠𝑑𝑙 , 𝑞𝑘 )
+ 𝑤𝑝𝑎𝑟 𝐶𝑎 (𝑠𝑑𝑖 , 𝑞𝑘 )
+ 𝐶𝑤 (𝑠𝑑𝑖 , 𝑞𝑘 ) +𝐶𝑎𝑑𝑠 (𝑞𝑘 )

𝑠 .𝑡 . 𝑤𝑠𝑒𝑞 = 1 iff ’Sequential mode is selected.’

𝑤𝑝𝑎𝑟 = 1 iff ’Parallel mode is selected.’

𝑤𝑠𝑒𝑞 ∈ {0, 1} and𝑤𝑝𝑎𝑟 ∈ {0, 1}

4.3 Sensing Deployment Adaptation

Adaptation decisions in AQuA-CEP are performed follow-

ing the MAPE-K feedback loop model [4] building on the

previous two steps (i.e., quality description and monitor-

ing). Consequently, themonitoring outcomes are analyzed

within every loop to determine adaptation decisions and

finally apply them to the stream processing infrastructure.

4.3.1 Controller. In Algorithm 1, we represent the con-

troller’s core functionality in AQuA-CEP.

Algorithm 1 Controller Functionality

1: Initialization:

𝑄𝑄𝑖𝑑 = 𝑒𝑡1, ...,𝑒𝑡𝑙 ← User Query Qid;

𝑄𝑃 ← {𝑞𝑝
1
, ..., 𝑞𝑝𝑛};

𝑆𝑈𝐵←∅;
𝐴𝐷𝑉 ←∅;

2: upon (𝐶𝐶𝑖𝑑 .Submit(𝑄𝑄𝑖𝑑 )) do

3: for 𝑒𝑡𝑖 ∈ 𝑄𝑄𝑖𝑑 do

4: 𝑆𝑈𝐵← 𝑆𝑈𝐵 ∪ 𝑠𝑢𝑏𝑒𝑡𝑖
𝑄𝑖𝑑

;

5: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵); ⊲ Algorithm 2

6: upon (𝑃𝑃𝑖𝑑 .Register(SD(𝑃𝑃𝑖𝑑 ))) do
7: for 𝑠𝑑𝑖 ∈ SD(𝑃𝑃𝑖𝑑 ) do
8: 𝐴𝐷𝑉 ← 𝐴𝐷𝑉 ∪ 𝑎𝑑𝑣𝑠𝑑𝑖

𝑃𝑖𝑑
;

9: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵); ⊲ Algorithm 2

10: upon (QMA.Alarm) do

11: ProcessAlarm(QMA.Alarm); ⊲ Algorithm 3

The first step of query processing is to initialize the

corresponding variables, i.e., the set of event types, their

quality policies, and the thresholds for each of these poli-

cies that need to be clearly identified by the consumer.

When the consumer with ID 𝐶𝑐𝑖𝑑 registers the query, the

controller initiates a subscription for each query’s simple

event. Such a subscription comprises details regarding the

event type of simple event (i.e., 𝑒𝑡𝑖 ) and the respective

query (i.e.,𝑄𝑖𝑑). On the other hand, a producer 𝑃𝑝𝑖𝑑 regis-

ters its available sensing deployments (i.e., SD(𝑃𝑃𝑖𝑑 )) in
the controller. When the producer completes the registra-

tion procedure, the controller generates an advertisement

for each sensing deployment of the producer. It includes

information about the respective data source and the ID of

the producer. After submitting each query or registering

data sources, the controller investigates possible solutions

to match current advertisements to subscriptions (Refer

to Algorithm 2).

Moreover, AQuA-CEP aims to assign data sources adap-

tively according to 1) changes in the environment, 2) qual-

ity of data streams and 3) dynamic thresholds of quality

policies. Hence, a feedback system continuously inspects

the conditions in both the data plane and the control plane

to trigger alarms upon any noteworthy changes. Upon

accepting any warning from QMAs which indicates a

quality-related situation, AQuA-CEP examines the alarm

type and processes it promptly. Depending on the type,

AQuA-CEP decides which reconfiguration should apply

in the data source assignment (Refer to Algorithm 3).
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4.3.2 Data Source Management. In Algorithm 2, we

represent the process of assigning data sources.

Algorithm 2 Data Source Management

1: function AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵)

2: for 𝑠𝑢𝑏𝑒𝑡𝑖 ∈ 𝑆𝑈𝐵 do

3: 𝑄𝑃𝑠𝑢𝑏𝑒𝑡𝑖 ← Related quality policies to 𝑒𝑡𝑖 ;

4: 𝑀𝐴𝐷𝑉 𝑒𝑡𝑖 ←Matching advertisements to 𝑒𝑡𝑖 ;

5: for 𝑎𝑑𝑣𝑠𝑑𝑖 ∈ 𝑀𝐴𝐷𝑉 𝑒𝑡𝑖 do

6: if 𝑎𝑑𝑣𝑠𝑑𝑖 .MeetAllQP(𝑄𝑃𝑠𝑢𝑏𝑒𝑡𝑖 ) then

7: C𝑠𝑑𝑖 ← 𝐶𝑆𝑆𝐶 (𝑠𝑑𝑖 ) + 𝐶𝑄𝑀𝐴 (𝑠𝑑𝑖 , 𝑞𝑘 );
8: SD(𝑠𝑢𝑏𝑒𝑡𝑖 ) ← SD(𝑠𝑢𝑏𝑒𝑡𝑖 ) ∪ (𝑎𝑑𝑣𝑠𝑑𝑖 ,

C𝑠𝑑𝑖 );
9: 𝛼𝑡 (SD) ← HACS(SD, G); ⊲ Solution

10: PerformTransition(𝛼𝑡 (SD));
11: function PerformTransition( 𝛼𝑡 )

12: for (𝑠𝑢𝑏𝑒𝑡 𝑗 , 𝑎𝑑𝑣𝑠𝑑𝑘 ) ∈ 𝛼𝑡 do
13: if 𝑠𝑢𝑏𝑒𝑡 𝑗 .𝑠𝑑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = ∅ then

14: 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑑𝑘 );
15: else

16: 𝑆𝑒𝑎𝑚𝑙𝑒𝑠𝑠_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 , 𝑠𝑑𝑘 )

To match advertisements to subscriptions, the function

AssignDataSource looks for potential candidates for each

event type in the list of related advertisements. In this

regard, a data source announced by an advertisement is

examined by a comparison between its current quality

characteristics and the current quality policies’ thresh-

olds related to the subscription (e.g., the current accuracy

level of a location data source should meet the policy of

an accuracy level of fewer than 2 meters). This function

assesses how many related quality policies can be fulfilled

by this data source. If it meets all related quality policies

(i.e., using the MeetAllQP function), the corresponding

advertisement will be considered a qualified candidate for

this subscription.

The costs of applying this sensing deployment include

systems-side and monitoring costs which are calculated

for each candidate and paired with its advertisement to

form members of a list showing the eligible sensing de-

ployments for each subscription (i.e., SD). Then, a heuris-

tic approach is applied on SD considering satisfying the

constraints in G (i.e., HACS), to realize an approximate

solution for the current situation. According to this newly

generated solution, if the previous sensing deployment is

changed, the transition between data sources can be done

in two ways using the function PerformTransition.

The immediate transition model occurs when the previ-

ous sensing deployment is not available anymore. So, the

controller should perform the transition as fast as possible

with minimum delay, e.g., the sensor disconnected from

the network. On the other hand, in seamless transition the

previous data source is still available. Therefore, the con-

troller performs the transition smoothly. For this type of

transition, AQuA-CEPwill process both data streams from

previous and current producers concurrently in a period

of 𝛽 seconds in which the transition is happening from its

invocation to its completion, e.g., when the sensor data

quality does not meet the quality policy’s threshold. In

some cases, the event stream’s quality is degraded, and the

stream is notably unreliable. To prevent wrong adaptation

decisions, AQuA-CEP pauses monitoring and performs

immediate transition.

4.3.3 Adaptation Strategies. Algorithm 3 shows the

capabilities of the AQuA-CEP to adapt dynamically to

the changes in the environment or process the queries

based on the dynamic quality policy thresholds. Each

QMA alarm has attributes such as type, corresponding

sensing deployment (i.e., 𝑠𝑑), quality policy (i.e., 𝑞𝑝), and

query identifier (i.e., 𝑄𝑖𝑑).

Algorithm 3 Alarm Processing

1: function ProcessAlarm(𝐴)

2: switch (𝐴.𝑡𝑦𝑝𝑒) do

3: case SDUnavailability:

4: for 𝑎𝑑𝑣𝑠𝑑𝑖 ∈ 𝐴𝐷𝑉 do

5: if 𝐴.𝑠𝑑 == 𝑠𝑑𝑖 then

6: 𝐴𝐷𝑉 ← 𝐴𝐷𝑉 − {𝑎𝑑𝑣𝑠𝑑𝑖 };
7: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵);

8: case ReducedQuality:

9: Wait-Monitor(𝐴.𝑠𝑑);

10: if 𝐴.𝑠𝑑 Not Recovered then

11: for 𝑎𝑑𝑣𝑠𝑑𝑖 ∈ 𝐴𝐷𝑉 do

12: if 𝐴.𝑠𝑑 == 𝑠𝑑𝑖 then

13: Update(𝑎𝑑𝑣𝑠𝑑𝑖 )

14: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵);

15: case ChangedQualityThreshold:

16: for 𝑠𝑢𝑏𝑒𝑡𝑖 ∈ 𝑆𝑈𝐵 do

17: if 𝐴.𝑞𝑝 ∈ 𝑄𝑃𝑠𝑢𝑏𝑒𝑡𝑖 then
18: Update(𝑠𝑢𝑏𝑒𝑡𝑖 )

19: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵);

20: case QueryEnded:

21: for 𝑠𝑢𝑏𝑒𝑡𝑖 ∈ 𝑆𝑈𝐵𝐴.𝑄𝑖𝑑 do

22: 𝑆𝑈𝐵 ← 𝑆𝑈𝐵 − {𝑠𝑢𝑏𝑒𝑡𝑖 };
23: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈𝐵);

Upon the arrival of a QMA alarm, if the alarm’s type

indicates that the connection to a data source is lost and

this sensing deployment is not available anymore (i.e.,

SDUnavailability), the controller removes all the related

advertisements and performs data source re-assignment

using the global optimizer. The next type of alarm is trig-

gered by a reduction in the quality of data streams con-

cerning the current thresholds of quality policies (i.e.,

ReducedQuality), e.g., when an obstacle blocks part of

a motion detector’s vision. In this case, the system per-

forms a Wait-Monitor procedure in a specific period, in

which AQuA-CEP checks the quality of produced events.

If the data source can recover from this situation timely,

our mechanism will continue with the current sensing

deployment. Contrarily, if the lack of sufficient quality

remains for the event stream, firstly the related advertise-

ments to this sensing deployment will be updated with

the new quality characteristics and then, a re-assignment
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procedure will start. The main goal of the Wait-Monitor

procedure is to prevent oscillation between data sources

since it will lead to more switching costs and might pro-

duce a worse global solution.

Since the consumer is able to adjust the quality policy

threshold during the runtime, various ranges are possible

for thresholds according to the query model. Upon this

type of variation, an alarm is triggered (i.e., ChangedQual-

ityThreshold) to indicate that a new threshold should be

taken into consideration. Hence, each subscription related

to the changed quality policy has to be updated, and a new

global re-assignment should be performed. Finally, if a

query is finished on time or even ahead of time manually,

the corresponding subscriptions will be removed from

the set of subscriptions. In addition, the producers and

CEP operators should disconnect from each other. Since

the absence of those subscriptions may change the global

solution, it is necessary to execute the AssignDataSource

function again on the current available advertisements

and subscriptions.

5 EVALUATION

In this section, we experiment with different ways of moni-

toring the quality of event detection and its corresponding

adaptation strategies. The main goals of the evaluation

are to figure out 1) does the data source assignment and

switching satisfy the consumer’s quality requirements

while improving QoS, and 2) what are the cost or limita-

tions involved in performing a transition among sensing

deployments.

5.1 Simulation Setup

To run our scenarios, we created a Virtual Machine (VM)

in Oracle VM Virtual Box Manager in which we installed

Ubuntu version 20 OS. We allocated 6 CPU cores with 100

percent execution capacity and 24 GB of main memory

to the VM. We run complex event processing with multi-

threading in this machine and create a thread for each

of the issued queries, thereby, we could manage them

simultaneously using Java.

For publish/subscribe communication of AQuA-CEP,

we build on Apache Kafka as a distributed platform. Fur-

thermore, for detecting complex events we build on Flink-
CEP [7], which is a library implemented on top of Apache

Flink. In our simulation, a Kafka server acts as an event

broker that serves both data events and control events,

as depicted in Figure 3. We monitor the quality of pro-

duced event streams in the QMA, which is located as an

Apache Flink operator using the parallel QMA configura-

tion model. In order to exhibit the potential of AQuA-CEP,

we evaluated our mechanism in two different scenarios,

one with the static quality policy and another with the

dynamic quality policy.

5.2 Static Quality Policy Scenario

We analyze the performance of AQuA-CEP in terms of

the event loss rate since this quality metric is directly

influenced by assumed dynamics. We compared our ap-

proach with two baseline mechanisms. The first approach
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Figure 3. The evaluation model of AQuA-CEP.

is called Optimal Dynamic Loss Rate (ODLR), which selects
the best data source in terms of Loss Rate at the start of

processing a query for each event type. Then, once the

monitored loss ratio for produced event stream in runtime

falls under its predefined characteristic, the controller first

updates this feature with the new assessment and then

performs a reassignment check. If this process results in

opting for another data source, the controller will switch

to the best producer in terms of the event loss rate. The

second approach is Optimal Static Loss Rate (OSLR) which
selects the best data source in terms of the event loss rate

and stays with it until the end of the query.

To make our motivation clear in this scenario, we be-

gan with a coverage problem scenario [25], in which the

objective is to solve the sensing placement problem to

maximize the coverage of𝑚 important points using 𝑛 sen-

sors. To properly capture the capabilities of AQuA-CEP,

we modified the coverage problem in a way that sensors

are already located in the environment and their location

cannot be changed. Moreover, instead of a set of𝑚 crit-

ical points, we have a dynamic group of queries to be

answered. The goal is to optimize the total energy con-

sumption by activating the set of sensors that can cover

all queries.

1 SELECT event.*

2 FROM

3 // Selecting event stream

4 SELECT ds.stream

5 FROM DS

6 PATTERN

7 lossrate < QualityPolicy.threshold

8 Within window_size

9 WHERE

10 ds.type = 'Temperature ' AND

11 ds.coverage(target_location) = True

12 WHERE event.value > Query.value

Listing 1. Applied query with static quality policy.

An example of a continuous query is shown in Listing 1,

which aims to collect the temperature in a specific loca-

tion accompanied by a static quality policy concerning a

threshold value for the event loss rate characteristics of the

sensing deployment. We applied variations in the event

loss rate of all sensing deployment that represents the real
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situations that might happen in the environment. We ap-

plied the same query with different values for thresholds

on each approach with the same simulation setup.

The temperature data in [3] is used which contains two

datasets and we chose one of themwhich has sensory data

about temperature, pH, and turbidity from 30 cm below

the water surface. We utilized this dataset because it has

a real-world distribution of temperature data that makes

our calculation more realistic. In our mechanism, each

functioning sensor takes the data from this dataset and

transmits its own transformed data according to its pre-

defined quality characteristics. It means that each sensor

will produce a unique temperature data stream according

to its own features.

In addition, we estimated the amount of energy con-

sumed by each sensor as described in [11]. This includes

the energy for sensing the phenomena, processing the

measurement, logging (i.e., reading data and writing it

into the memory), communication, and transient energy

(i.e., the transition energy to go from the idle state to the

active state, and vice versa). We presumed that the dis-

tance between sensors to the gateway is the same, and

they transmit packets of the same size.

5.3 Dynamic Quality Policy Scenario

We set side by side AQuA-CEP with Optimal Dynamic
Accuracy (ODA) and Optimal Dynamic Energy (ODE) ap-
proaches. The former is pretty identical to the ODLR ap-

proach in a static quality policy scenario which always

picks the best sensor in terms of accuracy and adjusts

the sensing deployment regarding the person’s current

location. The latter assesses the energy consumption of

the sensors as the distinguishing factor to opt for the best

option on every occasion.

In this section, we introduce an IoT scenario that demon-

strates the applicability of AQuA-CEP in the context of

IoT surveillance. Most of the DCEP systems fail to sup-

port and utilize multiple sensing deployments in order

to maintain a certain level of quality and react properly

to the scenario dynamics, e.g., exceeding the coverage

of a sensor due to the user’s mobility. It indicates that

DCEP systems require to rethink of switching between

data sources at runtime. In order to demonstrate the use of

quality policies, we consider a continuous query that aims

to detect and warn any person approaching a Dangerous

Area (DA) in an industrial zone depicted in Figure 4. In

other words, if the person is located less than a threshold

close to the dangerous area (i.e., within the Alarm Region

(AR)), an alarm is triggered to inform him on his device. In

our use case, the specified dynamic quality policy is "the

quality of the person’s location can degrade, as the person

moves away from the borders of the dangerous area, but

it should be as much accurate as possible when it is in

a close proximity of the target location". In this policy,

the quality metric is the location accuracy and the second

parameter is the target’s location (i.e., the accuracy level

is determined according to the target’s current location).

In this scenario, multiple entities are involved in the

system including a CEP engine, stationary sensors, mo-

bile sensors, people (i.e., targets), a consumer (i.e., query

Figure 4. Security monitoring: An example of sensing

deployment transition using dynamic quality policy.

issuer), and guards that act cooperatively to protect the

dangerous area. At first, the consumer in the factory needs

to submit a query to control people’s access to the dan-

gerous area. To do so, the query should consist of the

dangerous area’s details and the alarm region. Besides,

as in this case AQuA-CEP employs attribute-based access

control, the query must specify the access policy tree

of authorized targets. Once the required information is

determined, the query will be submitted to AQuA-CEP.

Since a publish/subscribe mechanism is used for the

management of people in this factory, a notification event

of prohibition to approach a dangerous area is generated

and all targets within the factory will be notified of the

prohibition. That’s because all targets in AQuA-CEP have

already subscribed to these types of notification events

when performing the admission process. Moreover, during

the admission process, each target explains its attributes

including its identity, and role in the factory. Also, it de-

scribes its carrying devices with their sensing capability

(e.g., smartphones, tablets, smartwatches, wearables, etc.).

In addition, it should be clearly detailed what type of data

each device can produce and what sensing and communi-

cation technologies it can provide. Also, we assume that

each target will give continuous access to their registered

sensing deployments and not deliberately block the con-

nection.

AQuA-CEP can access a sensing infrastructure based

on a multitude of sensors deployed on a target’s devices

(e.g., smartphones), such as Bluetooth Low Energy (BLE),

LTE, WiFi, and RFID sensors. Moreover, the system can

also benefit from other types of positioning infrastructure

embedded in the environment like cameras. Each of these

sensing deployments has its own characteristics and in

order to estimate the Energy Consumption (EC) in this

scenario, we reuse the measurements collected from [8,

15, 23, 28, 32], as indicated in Table 1. Among all sensors,

only Camera does not utilize the mobile phone’s battery

since it is a separate camera placed on the wall. Therefore,

we assumed its energy consumption was equal to placing

the phone in airplane mode.

The query correlates specific conditions - the target’s

position, the boundaries of the dangerous area, the alarm

region, and the authorization status of the target - to de-

tect a complex event of dangerous area violation. For this

case, the perception of a location event could use different

sensors to get an approximate position with the required
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Table 1. Sensing Configurations and Their Characteristics

Name Range (m) EC (mW) Accuracy (m)

BLE 70 - 100 426 1 - 3

RFID 1 - 12 375 0.1 - 2

WIFI 50 - 100 817 1 - 5

Camera N/A 374 < 1

LTE > Km 1634 < 1

quality level specified in the query’s quality policies while

optimizing the energy consumption of the application in-

stalled in the smartphone. Dependent on various aspects

like coverage, location uncertainty, and sensing frequency,

various query models can be utilized that meet the re-

quirements of the trade-off between quality and energy

efficiency. In this specific use case, since we do not need

a very accurate position when the person is far from the

dangerous area, AQuA-CEP uses the sensor which first

meets the quality level of the query and then has the small-

est amount of energy consumption for the smartphone.

Here, the event quality becomes less precise, the farther a

person is from the boundary of the dangerous area. There-

fore, AQuA-CEP may change between different sensor

deployments and appropriate query models.

Alike to the static quality policy scenario, we applied

the query to the simulation environment multiple times

considering the dynamic quality policy and analyzed the

results to gain more insights. With a fixed route for a

target person, we randomly generated coordination for

DA and AR to evaluate the performance of all approaches

when the DA is located close to different data sources.

1 SELECT event .*

2 FROM

3 // Selecting Event Stream

4 SELECT ds.stream

5 FROM DS

6 PATTERN

7 Accuracy < CurrentQualityPolicy.threshold

8 Within window_size

9 WHERE ds.type = 'Location '

10 AND

11 // Selecting Current Quality Policy

12 CurrentQualityPolicy = (

13 SELECT qp

14 FROM Query.QP

15 WHERE qp.InRange(target_loc))

16 WHERE Distance(event.loc , Query.DA) < Query.AR

Listing 2. Applied query with dynamic quality policy.

The CEP-enriched SQL format of the applied query

with a dynamic quality policy is represented in Listing 2,

in which a quality policy is selected or changed when the

target’s current location is changed (i.e., using the InRange

function). Once the current quality policy is specified, the

candidate streams are chosen based on the predefined

pattern.

Finally, a constraint satisfaction global optimization

algorithm is hired to obtain an assignment solution for

all queries from the determined candidate streams. In our
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Figure 5. Event loss rate ratio during the execution for

query 1 with the static quality policy.

simulation, we chose to apply Choco-solver [21], an open-

source Java library for constraint programming that suits

to satisfy our requirements.

5.4 Simulation Results

In this section, we will analyze our findings compared

to the other two mentioned baseline strategies in both

categories of static and dynamic quality policies. For the

former, we opt for the event loss rate as a quality criterion,

and for the latter, accuracy is the requested quality metric.

5.4.1 Static Quality Policy. The results regarding the

static quality policy scenario have been illustrated in Fig-

ure 5, and Figure 6. We executed the simulation ten times

for each query and the results were approximately similar.

To challenge our approach, we selected the results with

AQuA-CEP’s worst performance.

Regarding the event stream loss rate in Figure 5, the

chart displays the event loss rate for each approach in

one execution. It can be seen that the OSLR approach

shows the worst performance and proves the idea that

each mechanism requires adapting to the dynamics. Both

AQuA-CEP and ODLR select those sensing deployments

meeting the threshold, which is illustrated as a green

dashed line. Only two times, our approach exceeds the

threshold of the event loss rate highlighted by the gray

circles.

In the first quality policy violation, at the start of query

execution, since we are employing a 50-sec window size

over the event stream, we must wait for the window to be

completed. So, we can not rely on the monitoring results,

and we called this period as Blind Monitoring (BM) pe-
riod. Such a period started once we chose a new sensing

deployment. We masked this period with data from the

characteristic of the new sensor for all three approaches

and showed the simulation values with dashed lines. The

second gray oval indicates the sensing deployment switch-

ing time for AQuA-CEP. Again, we showed the simula-

tion results with the red dashed line. We cannot rely on

this window information because the window comprises

events that partially belong to the previous sensors, and

the rest belongs to the newly selected sensor until the BM

period is ended. Within this period, we can not perform
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Figure 6. Total energy consumption for different sets of

queries with the static quality policy.

adaptations since the outputs are not fully reliable. There-

fore, the event loss rate results can go above the threshold

and no sensing deployment switching would be triggered.

Hence, a lower number of BM periods results in a

higher percentage of query duration being monitored.

Having this fact in mind, AQuA-CEP achieves better re-

sults than the ODLR since it has fewer switching counts.

The difference between AQuA-CEP and the ODLR has

escalated considerably once more queries are submitted.

That means the number of BM periods is increased sig-

nificantly, leading to less reliability in quality monitoring

that also influences the adaptation decisions. In addition, a

higher number of sensing deployment switching results in

taking more actions to activate or deactivate the sensors,

stop analysis and monitoring on the previous sensors and

start the procedure over the new sensing configuration.

From the energy consumption point of view, there is

also a remarkable dissimilarity between these two ap-

proaches exhibited in Figure 6. The graph shows that the

amount of energy consumed in AQuA-CEP is less than the

ODLR approach. From the set of four queries onward, the

total consumed energy seems equal. But, the reason is one

or more queries in ODLR stopped processing, thereby, the

consumed energy for themwas equal to zero. On the other

hand, queries in AQuA-CEP keep being answered until

the end of simulation time. For a clearer comparison, we

illustrated the results for both approaches until 250 sec of

execution, when all queries are still active. Therefore, the

results now give more insight into the energy consump-

tion performance and are more likely to be comparable.

Hence, the consumed energy for all sensors in AQuA-CEP

is dramatically lower than the ODLR approach, respec-

tively, proving the ability of our approach to optimize the

server-side costs. It also can be seen that the difference

between the two approaches is increasing by involving

more queries in the execution which ascertains the fact

that AQuA-CEP is more reliable than ODLR to deal with

involving more queries.

5.4.2 Dynamic Quality Policy. Figures 7 and Figures 8

exhibit the simulation’s outcome in the case of applying

dynamic quality policy over the query processing. With

energy consumption in mind as the comparison parame-

ter, one can observe from Figure 7 that there is a dramatic
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Figure 7. Total energy consumption for different sets of

queries enriched by the dynamic quality policy.
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Figure 8. Number of detected events and the summation

of FP and FN for different sets of queries enriched by the

dynamic quality policy.

distinction between AQuA-CEP and ODA. The rationale

is ODA prefers the LTE sensor at all times for location

tracking since it delivers the most accurate results while

consuming the highest amount of energy among all sens-

ing deployments. From this point of view, it can be con-

cluded that employing the ODA mechanism can quickly

lead to the phone’s battery exhaustion while AQuA-CEP

is able to preserve the battery at a satisfactory level. On

the other hand, although the ODE approach is assumed

the optimal approach in terms of energy, it consumes

slightly less energy than AQuA-CEP. That’s why we can

claim the performance of AQuA-CEP in regard to energy

consumption is near-optimal. It should be noted that the

discrepancy between the results of these two techniques

is raised slightly by initiating more queries, but it is still

negligible.

In event-based systems, one of the main criteria to com-

pare approaches is the number of False Positives (FP) and

False Negatives (FN) in detecting complex events. In our

example, an FN denotes a violation by entering a red-

flagged area that occurred in the real world, but the event

processing system could not catch it and triggered an

alarm. Besides, an FP indicates a wrong violation that has

been detected by the system while it is against the ground

truth. Since both of these errors are feasible in our use

case with small counts, we form a single number of their
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summation that makes the differences more distinguish-

able as illustrated in Figure 8. Since ODA permanently

answers queries with the most accurate sensors, it serves

better than other methods. It could catch all the complex

events without any FP or FN, but with the cost of drain-

ing the phone’s battery. With fewer queries, ODE acts

nearly the same as AQuA-CEP. But once more queries

are involved, the situation becomes worse for the ODE

approach by creating more FPs and FNs. In other words,

the enlargement in the number of FNs and FPs is more

evident in the bars related to ODE, while this summation

in our results remains the same after adding more queries.

It probably happens because of the lower detection capac-

ity of data sources with the smallest energy consumption

when the dangerous area is located in their closed vicinity.

The sensors with less energy consumption level have less

room for consumers and upon concurrent usage might

deliver less accurate data leading to more FPs and FNs.

Similar to FN and FP in stream processing, F-score is a
well-known performance measure in machine learning

approaches that combines the other two measures, preci-
sion and recall, which are mostly employed to distinguish

between classifiers [16] in terms of accuracy. Therefore,

F-score can be used in stream processing to comparemech-

anisms in terms of accuracy. Analyzing the F-score shows

an ascending trend in the reports which are approximately

0.947, 0.941, 0.961, 0.975, and 0.977 for sets of 1, 2, 3, 4,

and 5 queries, respectively. While, the outcome for ODE

as 1, 0.969, 0.961, 0.962, and 0.953 displays a descending
trend. This proves the ability of AQuA-CEP to deal with

involving more queries while maintaining the accuracy

of event detection.

6 RELATEDWORK

Reacting to environmental dynamics is highly important

while using DCEP systems in IoT scenarios for maintain-

ing the QoR and QoS at a satisfactory level based on con-

sumers’ quality requirements. To select the suitable sens-

ing deployments for each query, AQuA-CEP performs a

global optimization in sensing deployment configuration

that takes into account the consumer-side constraints as

their quality requirements and monitors the quality of

produced events to assess and make adaptation decisions

to maintain the quality of the produced outcomes. In this

section, we compare our work to the related work in two

key areas, sensor selection, and quality monitoring.

6.1 Sensor Selection

In the context of IoT networks, the Sensor Selection Prob-

lem (SSP) is a leading research direction to select the best

set of sensors to achieve energy efficiency due to power

limitations in sensor nodes [10, 30, 31]. More precisely, the

selection in SSP-oriented research works is performed by

picking a set of homogeneous sensors and executing the

sensor aggregation. In the context of stream processing

(e.g., DCEP systems), most runtime adaptive approaches

concentrate on the operator networks, including adap-

tation on topology, deployment, processing, overload,

fault tolerance, and infrastructure [6]. There are a few

approaches similar to AQuA-CEP which are called data
source switching mechanisms [5, 14] and most of them

only applied to video streaming applications [22].

Although both of the mentioned related approaches

study the dynamic selection of sensors in an IoT envi-

ronment to optimize the QoR, such optimizations are

performed respecting specific data attributes or a set of

specific fused sensor sources. However, integrating such

methods in the context of DCEP requires linking them

dynamically to different configurations of heterogeneous

sensors. Only in this way, the flexibility of current DCEP

systems in reconfiguring and rewriting the detection logic

of complex events can be used to optimize for QoR.

6.2 Quality Monitoring

In DCEP systems, quality assessment has been mostly

studied in the placement of detection logic over the avail-

able computing resources (e.g., [19]), and only a few re-

search works focus on the adaptation of sensing deploy-

ment to react dynamics. Although these mechanisms are

quite similar in performance to our proposed approach,

they are focused only on one aspect of the system (e.g.,

CEP query language in [29]).

In the IoT environment, the service composition mecha-

nisms consider the sensory data streams as services pro-

vided by the connected objects to be analyzed and deliver

results to the corresponding applications and allow the

interaction between consumers and smart objects of IoT

environment [2, 9, 13]. Considering the vulnerability of

IoT service quality to environmental dynamics, service

composition techniques try to specify a set of quality met-

rics to analyze the quality of delivered streams to target

applications. By employing heuristic and meta-heuristic

techniques (e.g., [24]), several approaches attempt to find

a global service composition solution while fulfilling QoS

demands. These mechanisms tend to monitor and assess

the quality of IoT services and adapt the system to main-

tain the quality, e.g., by training the Hidden Markov Mod-

els (HMM) to predict QoS. However, their quality expres-

sivity is limited to defining the static thresholds causing

inflexibility in acquiring more complex consumers’ qual-

ity requirements. Moreover, AQuA-CEP is more efficient

in terms of energy consumption since it endeavors to

minimize the number of active sensing deployments and

eventually fulfills the requested quality requirements.

7 CONCLUSION AND FUTUREWORK

In this work, we proposed AQuA-CEP which represents

how to enable dynamic adaptation of sensing deployment

configuration while observing the quality of produced

events and their data sources. In addition, by proposing

optimization criteria for the dynamic activation of sen-

sors, our mechanism can help save resources in the sens-

ing infrastructure. Our evaluation results demonstrated

that AQuA-CEP outperforms two baseline approaches in

terms of switching counts between sensing deployment

and performed near-optimal in regard to the total energy

consumed by the sensing network in static quality policy

scenario. Moreover, by applying a dynamic quality policy,
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AQuA-CEP achieved near-optimality in terms of energy

consumption and quality measured in form of FP and FN.

Moreover, the F-score results proved that AQuA-CEP has

sufficient capabilities to fulfill consumers’ quality require-

ments when more queries are involved.

In our future work, we will consider priority in the qual-

ity policy definition and investigate its impacts to support

concurrent query processing. Estimating the switching

overhead is another point of interest that requires further

research. In addition, minimizing the blind monitoring

periods can be attainable by predicting the data source

switching time. We believe, building on a statistical anal-

ysis of the data sources’ performance will be a promising

direction. Finally, we plan to extend our proposed research

by taking into account dynamic factors like quality degra-

dation of data sources over time in dynamic quality poli-

cies.
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