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Abstract—In the dynamic landscape of machine learning ap-
plications on streaming data, the constant evolution of models
and input data complicates optimal model deployment. The
static selection of a model risks suboptimal performance as
data patterns evolve, while frequent redeployments increase
operational costs. This paper proposes a self-adaptive system
that autonomously selects interchangeable models for processing
streaming data while balancing the tradeoff of performance
and redeployment frequency. Inspired by the MAPE-K refer-
ence model, our approach utilizes an adaptive model selection
control loop to continuously monitor model performance on
production and experimental data. “what-if” environments are
introduced to collect additional experimental data, simulating
production-like scenarios. A selection algorithm that employs two
distinct adaptation policies is introduced that strategically plans
the selection of the most suitable module for upcoming data.
Leveraging a learning-based method, we improve the efficiency
of our system by recognizing the patterns of selection eliminating
the need for further experimental data collection. Empirical
evaluation on an energy forecasting use case spans over 16 years
of data demonstrates a substantial reduction in errors up to 34%
compared to the best static selection, affirming the proposed
framework’s effectiveness. Our findings reveal the potential to
discontinue experimental “what-if” analyses with just 12% of
historical data, which underlines the practicality of our adaptive
strategy on a long-lasting task.

Index Terms—Data Processing, Adaptive System, Service Se-
lection, Machine Learning Development, Continuous Deploy-
ment.

I. INTRODUCTION

Data scientists and machine learning (ML) developers are
continuously developing new ML models to handle data pro-
cessing tasks. However, the data used to train and evaluate
models, which represent real-world conditions, is constantly
changing. Therefore, developing high-quality ML solutions
can be prolonged as it requires both extensive data collection
and model development over numerous iterations.

Delaying deployment until a singular “best” model consis-
tently outperforms others across all data points is inefficient
and impractical for real-world use cases demanding an opera-
tional ML system. Organizations need deployable solutions as
early as possible in the development cycle. This raises the key
challenge of determining which model(s) should be deployed
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and when during ongoing development as new models are in-
troduced and data evolves over time. This challenge intensifies
in stream processing tasks where data are not immediately
available, limiting the information accessible for informed
real-time decision-making.

While the ideal solution would be to deploy the model
with the lowest error that remains optimal forever, in practice
the most accurate model can change depending on the input
data. Additionally, changing the deployed model in a pro-
duction environment comes with costs such as downtime and
infrastructure overhead during updates. Therefore, the optimal
strategy aims to balance minimizing error rates and disruptions
from model changes.

The challenge of efficient model selection in machine learn-
ing and software engineering has prompted various attempts
within these communities. In the machine learning realm,
approaches like meta-learning and ensemble methods have
been explored. Ensemble methods, while combining outputs
from different models, may not consistently outperform indi-
vidual models for all data inputs, and they often incur high
computational costs due to training and concurrent execu-
tion of multiple models on all datasets [1]. Meta-learning,
an alternative approach, aims to predict model performance
based on dataset features but requires the entire dataset to
be available for feature extraction, assuming the presence of
relevant features correlated with model performance [2]. These
methods face practical challenges, especially when dealing
with a large number of datasets with diverse complexities in
continuous machine learning development. Furthermore, they
often overlook non-functional requirements, such as computa-
tional cost, in the decision-making process.

Meanwhile, in the realm of service computing techniques,
the emphasis lies in the one-time selection of services during
service composition for tasks with a focus on non-functional
requirements. Despite the abundance of adaptive systems in
the service community, their primary focus is not on service
selection but rather on aspects such as self-healing, auto-
scaling, and service placement within the system [3].

The principle of “Everything as a module” (XaaM) [4]
bridges the gap between machine learning and service-oriented
development. XaaM views a module as a self-contained soft-
ware component designed to take zero or more inputs, perform



a specific function, and provide zero or more outputs. In the
context of data stream processing, we characterize modules as
producers, processors, or consumers. A producer like a sensor
driver generates output without requiring input. Conversely, A
processor like a machine learning model processes input to
produce output. Finally, a consumer like a database interface
ingests input data for storage, consequently not generating
a traditional output. As part of XaaM realization, this work
addresses the problem of dynamically selecting the best-
performing module for a given machine learning task at
runtime in a stream processing context to maximize the mod-
ule’s performance while minimizing the frequency of module
redeployments.

This paper introduces a self-adaptive system utilizing a
control loop based on the widely-used MAPE-K reference
model [5] to continuously monitor and select ML modules in
streaming applications. Leveraging historical module perfor-
mance, the system makes informed selections for production
deployment and experimentation based on ongoing observa-
tions. Unlike ensemble models that incur higher costs by se-
lecting multiple modules for production, our approach reduces
costs by selecting a single module for production at each
time, focusing on individual data points rather than average
performance. To gain insights into non-production modules,
we introduce “what-if” environments, simulating production-
like scenarios with informative data samples. Rather than pre-
dicting module performance, which is challenging in streaming
data, our approach focuses on understanding the pattern of
optimal selection. From a service computing perspective, our
work incorporates adaptive service composition, dynamically
changing the ML module in production at runtime based on its
performance. This work stands out in its novel integration of
machine learning and service computing principles, addressing
the identified problem with an effective approach.

In this paper, we present a selection algorithm equipped
with two distinct adaptation policies, specifically crafted to
respond to sudden shifts in system performance. Accompa-
nying this, we introduce a learning-based method capable of
detecting the inherent patterns that dictate how the selection
algorithm reacts to incoming data. This method significantly
lowers the computational overhead involved in running parallel
modules evaluations in “what-if” scenarios, thus bolstering the
efficiency of our adaptive framework.

We conducted experiments focused on forecasting hourly
energy consumption demand over 16 years, implementing
multiple machine learning modules within our system. Two
benchmarks, random and optimal choice, were established.
The optimal choice exhibited a remarkable 38% less error
compared to the best static module, while the random choice
performed 15% worse. Through extensive experimentation
on this use case, we showcase how our adaptive selection
algorithms progressively optimize the deployed pipeline. Our
solution yields a significant reduction in errors, up to 34%,
compared to the best static selection. These results land in
close proximity to the optimal choice benchmark, thereby
validating the efficacy of our proposed adaptation policy. Our

experiments on the learning-based selection method illustrate
its potential to stop “what-if” scenarios using just 1 to 2 years
of data, depending on the chosen policy, further emphasizing
the practicality of our adaptive strategy for long-running tasks.

The rest of this paper is organized as follows: Section
II discusses related work. Section III outlines our proposed
framework, provides a formal problem definition, introduces
the adaptation policies and their respective implementation
algorithms, and explains the details of the learning-based
method. Section IV presents an experimental evaluation, fo-
cusing on an energy forecasting use case. Finally, Section V
concludes the paper.

II. RELATED WORK

This study resides at the convergence of machine learning
methodologies and service computing paradigms, delving into
both domains to establish its contextual framework.

A. Machine Learning
Our work lies at the intersection of machine learning

methodologies, particularly in the domains of Meta-learning
[6] and ensemble models [7]. The algorithm selection chal-
lenge, dating back to Rice in 1976 [8], recognizes the absence
of a universally superior algorithm. Meta-learning prerequi-
sites include diverse datasets, a range of algorithms, perfor-
mance metrics, and suitable meta-features for characterizing
datasets. Notable approaches, such as Auto-CASH [9] and
MARCO-GE [10], leverage deep reinforcement learning and
supervised graph embedding to predict optimal algorithms.
However, these approaches face significant hurdles in ex-
tracting meaningful meta-features in such dynamic environ-
ments. Our approach shares two prerequisites with meta-
learning—availability of performance metrics and a variety
of algorithms—while being less restrictive and applicable to
stream processing and general tasks.

Alternatively, Ensemble methods for time series [11], [12]
bear similarities to model selection in stream processing.
While enhancing predictive accuracy by aggregating multiple
models, they do not inherently address real-time model se-
lection challenges. Ensemble models, adjusting weights based
on individual base learners’ outputs, may have varying per-
formance and act as another model rather than a selecting
model. The need for constant retraining ensemble models
limits adaptability in dynamic environments, and the quest for
an algorithm that performs universally well on every single
point, as noted by Rice [8], remains elusive. In contrast, our
problem-agnostic system incorporates these models into a pool
and updates selections based on real-time performance. By
selecting one individual learner for production instead of run-
ning all of them concurrently, our system significantly reduces
computational costs while maintaining superior performance
in terms of accuracy metrics.

B. Service Computing
Self-adaptation is deeply ingrained in Service Computing,

showcasing notable progress through mechanisms like auto-
scaling [13], [14] and self-healing [14], along with adaptive



resource allocation [15]. The software community’s response
to the algorithm selection problem primarily centers around
service composition [16]. These approaches exhibit adapt-
ability to diverse changes, including changes in data sources
[17], and alterations in network dynamics [18]. Many of
these approaches employ the MAPE-K loop [19], while some
leverage Deep Reinforcement Learning techniques [20], [21].
They distinctly prioritize non-functional aspects like self-
healing [22] and quality-of-service metrics [18], covering
critical elements like resource utilization and latency [23].

While most contributions in this domain primarily aim to
fulfill task requirements and optimize non-functional param-
eters [19], our work introduces a novel solution specifically
tailored for the unpredictable performance of machine learning
algorithms. Our approach extends continuous monitoring with
“what-if” scenarios for continuous testing, recognizing the
high dependence of ML applications on data.

III. METHODS

The section opens with an overview of our self-adaptive
system architecture and outlines its core functions. The module
selection problem is then formally defined, setting the stage
for exploring adaptive policies. Subsequently, it introduces
two adaptation policies and their corresponding algorithms for
module selection. The section concludes by presenting a novel
learning method designed to efficiently reduce the costs of
running concurrent experiments.

A. Self-Adaptive System

We have developed a Self-Adaptive System [24] capable
of adapting to changes in data, where data represents the real
world. Additionally, it can adapt to internal modifications, such
as adding new modules. The architecture of our proposed self-
adaptive system is depicted in Fig. 1.

Drawing upon the terminology from [25], our system is
organized into three primary layers:

• Managing System: This layer comprises user-defined
modules and integrates our proprietary adaptive module

Managed Subsystem

Sensing Environment

Managing System AMoS: Adaptive Module Selection

: Selection

Plan Analyze

Deploy

Execute Monitor

: Ground Truth

Knowledge

Base

: Equivalent Modules

: Data Points

Monitor

Production
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Fig. 1. Proposed Self-adaptive System

selection mechanism, ensuring optimal module selection
based on evolving conditions.

• Managed Subsystem: Encompassing cloud environ-
ments, it includes both production and hypothetical
“what-if” scenarios. It provides the foundation for module
deployment.

• Sensing Environment: This layer interfaces with data
that mirrors real-world conditions, ensuring the system’s
adaptability remains contextually relevant.

The managing system layer comprises equivalent modules
that are given to the system by developers and scientists. Two
modules qualify as equivalent when they are irreplaceable
components in the context of software services. For instance,
linear and ridge regression models trained on identical datasets
to perform the same function are considered equivalent, de-
spite potential differences in performance outcomes. This
equivalence implies that both modules operate on identical
input data, execute the same task—albeit using potentially
different methodologies—and yield functionally compatible
outputs.

The Adaptive Module Selection (AMoS) system manages
module deployment across cloud infrastructures. Its key func-
tion is to employ adaptation policies, dynamically selecting
the appropriate module for the production environment. Addi-
tionally, AMoS conducts experiments within a production-like
“What-if” environment to enhance the evaluation of module
performance, thereby improving deployment decisions. Fur-
thermore, it continuously monitors both the cloud and the
sensing environments for timely reactions to any changes
encountered.

On the managed subsystem, our primary focus is on the
production and “what-if” environments. In line with standard
practices, the production environment is given the highest
priority, receiving all data and a significant allocation of
resources. Modules here are dynamically scaled to manage
real-time data input.

The “What-if” environments form an experimentional
framework to explore the potential impacts of deploying alter-
native modules in production. They address the fundamental
hypothetical question, “What if a different module operates
in production?” Considering operational costs, the “What-if”
environments are ephemeral and provided with fewer resources
than those available in the production environment, reflecting
their exploratory nature.

To manage computational resources effectively, the “What-
if” environments use a sampling strategy instead of experi-
menting on every data point. This approach balances compre-
hensive analysis with computational efficiency. Moreover, the
evaluation does not extend to every possible module; rather,
it focuses on a selection of modules considered promising
alternatives to the current one in production. Furthermore, the
opportunity to operate on archived data provides an under-
standing of how newer modules might have performed if they
had been operational from the start.

This paper does not delve into “What-if” scenario genera-
tion, which encompasses decisions about which module to run



on which data sample. The development of advanced sampling
methods and the strategic selection of modules for these sce-
narios are subjects for subsequent research. Instead, the present
work stands as a proof of concept for the framework, focusing
on adaptation policies and module selection algorithms within
the AMoS framework.

The sensing environment consists of the immediate data
points captured by sensors and the delayed provision of
ground truth data. Sensor data are processed in real-time by
production modules. To illustrate, consider a scenario specific
to predictive tasks. These tasks utilize sensor readings to
predict future scenarios. Upon reaching the predicted future
moment, the newly captured data serves as the ground truth,
providing a benchmark to evaluate the accuracy of the mod-
ules’ predictions.

In the cases where expert input for verifying predictions
or labeling may be demanded for a subset of data points,
potentially matching the samples used in “What-if” scenarios.
Ground truth is crucial for the validation and calibration of the
modules during the machine learning development process.
However, the method by which ground truth is acquired is
not within the scope of the framework’s operations. The
framework operates with the premise of accurate ground truth
being available for its adaptation process.

B. AMoS: Adaptive Module Selection

Within AMoS, we utilize a control loop based on the
renowned MAPE-K model which stands for Monitor, Analyze,
Plan, and Execute, over a shared Knowledge base [5]. This
knowledge base retains all information about the modules,
their performance measures, and the current and desired state
of the managed subsystem and the sensing environment.

In the Monitor phase, our system continuously collects
data from the managed subsystem and the environment. This
involves capturing performance metrics from the operational
modules in production and ’what-if’ environments. Our study
centers on the functional requirements of the system, which are
intrinsically connected to the task at hand and the underlying
business logic. Aligned with XaaS [4], these functional per-
formance metrics are integral to the system, and provided by
those who understand the required tasks, e.g., developers and
data scientists. They are responsible for setting the standards
by which module performance is measured. Accordingly, our
system is tasked with gathering this information.

Moving to the Analyze phase implements the evaluation
methods to find discrepancies between module outputs with
the ground truth. AMoS views the evaluation method as an
arbitrary error function provided by the developers and data
scientists. They take in the modules’ outputs and ground
truths as inputs and produce outputs that can be quantitatively
compared. The values generated by these error functions
enable us to compare the effectiveness of different modules.
This analysis not only aids in pinpointing performance issues
but also provides a foundation for refining the module selection
process.

In the Plan phase, the system implements selection al-
gorithms to apply the adaptation policies using the insights
gathered from the Analyze phase. These selection decisions are
informed by the current and historical statuses of the managed
subsystem and the sensing environment. Using adaptation
policies, AMoS decides whether to continue with the current
module or to switch to an alternative one to minimize the
error value. Moreover, the Plan phase identifies which what-
if scenarios to run to understand the performance measures
of equivalent modules better. Consequently, the choices made
in the Plan phase determine module deployments in both
production and “what-if” environments.

Finally, the Execute phase crafts an execution strategy based
on the devised adaptation plan. It continuously observes the
desired state described in the adaptation plan and reconciles
it with the actual deployment in the managed subsystem.

C. Problem Description

This paper specifically focuses on processor modules that
receive input and produce output. This includes machine
learning models that analyze incoming data and generate
predictions, normalizers that adjust and standardize data as
it comes in, and post-processing modules that further process
data after initial treatment to prepare it for its final form or
use.

We define a module m as a function m : X → Y where
X and Y represents the space of possible inputs and outputs,
respectively. Let M = {m0,m1,m2, ...} be a sequence of
equivalent modules. Two modules mi and mj are equivalent
if they share the same domain and range. In other words

mi ≡ mj ⇐⇒ Xi = Xj ∧ Yi = Yj (1)

While equivalent modules may implement different method-
ologies and potentially yield different outputs, they are de-
signed to be functionally compatible, allowing for their sub-
stitution in a given system without disrupting the flow of
operations.

Consider input data as a sequence X = (x0, x1, ...), we can
define a selection sequence, S = (s0, s1, ...), where each si is
a module selected from M to process the corresponding data
point xi. The output resulting from this selection is represented
by Ŷ = (ŷ0, ŷ1, ŷ2, ...), such that ŷi = si(xi). Alongside this,
we have Y = (y0, y1, y2, ...), yi ∈ Y, a sequence representing
the ground truth or target values where yi is corresponding to
ŷi.

To assess the effectiveness of a given selection sequence,
we introduce two metrics:

• Firstly, the error between our output and the target
values, denoted by err(yi, ŷi), serves as an arbitrary error
function where err(yi, ŷi) ∈ R+

0 .
• Secondly, the “Average Hold Time” metric, represented

by the function C over a period [0, τ ] is defined as:

C(S, τ) = τ + 1

1 +
∑τ−1

i=0 δ(si, si+1)
, (2)



where the numerator is the total number of selections and
the denominator is the number of changes by time τ .
The δ(a, b) is a delta function used to count the changes
between two consecutive selected modules and is defined
as:

δ(a, b) =

{
0 a = b
1 a ̸= b

(3)

This metric gauges how often the selection mechanism
swaps the currently deployed module with another.

The objective is to solve a multi-objective optimization prob-
lem where the aim is to discover a selection S that both mini-
mizes the cumulative error,

∑
i err(yi, ŷi), and maximizes the

average hold time limτ→∞ C(S, τ).

D. Adaptation Policies

The choice of the adaptation policy plays a pivotal role in
module selection. Such policies should seamlessly balance ac-
curacy with computational efficiency. Therefore, we designed
two adaptation policies in this research: Rolling Average and
KEEP. Each policy is uniquely designed and evaluated for its
efficiency in balancing module performance and redeployment
frequency.

a) Rolling Average Policy:: Our inaugural policy is de-
signed to swiftly adapt to changes in module performance.
It employs a rolling window approach, assessing the perfor-
mance of available modules for each data point xi using the
most recent k data points within the window W k

i , defined as:

W k
i = {(xj , yj) | i− k ≤ j < i} (4)

The policy selects module si = m by identifying the one that
minimizes the average error E(W k

i , si) within the window,
expressed by the inequality:

∀n ∈M, E(W k
i ,m) ≤ E(W k

i , n) (5)

where the average error is defined as:

E(W k
i , si) =

∑
(x,y)∈Wk

i

err(y, si(x))

k
(6)

The window rolls forward as the data progresses, continually
reassessing modules based on their recent performance.

b) KEEP (Keeping Errors down with Enhanced
Persistence) Policy:: Tailored to minimize errors while
avoiding unnecessary module switches, this policy extends
the principles of the rolling average. It introduces an additional
feature that preserves the current module m unless its relative
error to the optimal module n exceeds a predefined threshold
θ. The relative error is computed as the percentage difference
between the errors of the current and optimal modules. A
switch to the optimal module occurs when the relative error
surpasses the threshold, as expressed by the inequality:

|E(W k
i ,m)− E(W k

i , n)|
E(W k

i , n)
> θ (7)

E. Adaptive Selection Algorithm

This work presents an algorithm, detailed in Alg. 1, crafted
to employ the aforementioned adaptation policies. This algo-
rithm is configurable and can be tailored through its input
parameters to embody and enforce the specified policies as
required.

Algorithm 1 Adaptive Module Selection
Require: m, i, k, θ

1: choice ← m
2: for s ∈M do
3: E[s]← E(W k

i , s)
4: end for
5: optimal-err ← min(E)
6: optimal-module ← E.indexOf(optimal-err)
7: if |E(Wk

i ,m)−optimal-err|
optimal-err > θ then

8: choice ← optimal-module
9: end if

10: return choice

The algorithm takes four input parameters: the currently
selected module m, the current time index i, a window size k
for error calculation, and a performance threshold θ. Its default
action is to maintain the currently selected module (line 1
of the algorithm). Subsequently, the algorithm computes the
average error E, over the specified window size k for each
module within the pool of candidate modules M (lines 2-4).
It identifies the optimal error, the lowest average error from
these computations, and the module with the optimal error
(line 4-5). The subsequent step involves assessing whether
the deviation between the error of the current module and
the optimal error exceeds the predefined threshold θ. If this
difference is greater than the threshold, the algorithm selects
the module with the optimal error (lines 7-9). Otherwise, it
retains the current module as the chosen one. Finally, the
algorithm outputs the selected choice, which is the module
to be deployed in the production environment (line 10).

F. LBS (Learning-Based Selection) Method:

The LBS method is designed to reduce computational over-
head by eliminating the need to evaluate promising modules.
It leverages a learning model to predict the best module
choices, recognizing that adaptation policies typically select
modules following a detectable pattern related to input data.
This approach proves advantageous for prolonged tasks that
generate enough data to identify these selection patterns.

Although the “what-if” scenarios are designed to be
lightweight on sampled data using limited modules, the ben-
efits of information gained from experimentations relative to
the costs begin to drop over time. LBS addresses this issue.
Upon detection of a consistent selection pattern, it can learn
to make informed decisions, thus reducing the need for further
experimentation.

Specifically, LBS learns from the history of module choices
made under a particular policy. It replicates the outcome of a
conventional selection algorithm without actually performing
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Fig. 2. Dataset Visualization

the selection computation each time, thus saving computa-
tional effort. For example, it can learn from the decisions
of the selection algorithm or adhere to benchmarks such
as “Best-RMSE”, detailed in subsection IV-B, to select top-
performing modules. This showcases its adaptability across
various selection criteria.

The type of predictive model used in LBS can be adapted
to the task at hand. The learning component is fed the same
input as the operational modules, to predict the chosen module
for each data point.

To apply LBS, we leverage the model with the best past
performance from our module library. This model, already
fine-tuned to reveal patterns in the input data, is further trained
with the task-specific data and expected outcomes. Since this
model is adept at identifying trends, it becomes a natural
choice for implementing LBS, requiring minimal task-specific
adjustment.

IV. EVALUATION

This section evaluates the performance of our self-adaptive
system using a real-world use case, adhering to established
practices for assessing adaptive systems [26]. It begins by
introducing the use case, detailing the experimental setup,
and presenting the results from parameter adjustments in the
implementation of adaptation policies.

A. Use case

This use case’s primary objective is to forecast regional
energy consumption using historical consumption patterns. We
work with a public dataset named “PJM Hourly Energy Con-
sumption,” available on Kaggle1. PJM Interconnection LLC,
commonly referred to as PJM, is a Regional Transmission
Organization (RTO) in the United States that operates within
the Eastern Interconnection grid. The dataset captures hourly
power consumption from PJM’s official website, presented in
megawatts (MW). The problem is to predict the upcoming en-
ergy consumption based on the previous consumption pattern.

We utilized the East Region file data, PJME_hourly.csv.
This dataset comprises two columns: datetime, which
represents the timestamp, and PJME_MW, which denotes the
energy consumption in megawatts (MW). A visualization of
this data can be seen in Fig. 2, while its characteristics are
detailed in Table I.

1www.kaggle.com/datasets/robikscube/hourly-energy-consumption

TABLE I
DATASET CHARACTERISTICS

Duration Records Mean Standard Deviation Min Max
2002-2018 143207 32111 6486 14544 62009

B. Experimental Setup

We simulated a stream processing environment to mirror
its operation in a real-world production context. Initially, we
based our approach on a dataset spanning one year. Using
this first-year data, we trained our modules. Every week after
that, we refined our modules, training on the most recent data
to forecast the hourly energy consumption for the following
week.

We operated on the premise that a singular module is
actively deployed and scaled in the actual production envi-
ronment. Concurrently, other modules process a subset of the
primary data in “what-if” environments. This approach lets us
harness insights from all modules, ensuring informed decisions
when selecting the most effective module.

Our choice of modules was inspired by the top-performing
Kaggle notebooks for this dataset. We selected three stand-
out modules: Prophet2, XGBoost3, and Light GBM4. We
implemented two stacking methods to gauge the efficacy of
our module selection technique against ensemble approaches.
These stacking methods utilized the predictions from the
three aforementioned modules, with XGBoost and Light GBM
serving as our primary stacking models.

To assess the relative performance of our adaptation poli-
cies, we introduced two distinct selection benchmarks:

• Selection (Best-RMSE): This method provides a bench-
mark for the optimal module selection based on mini-
mizing the RMSE (Root Mean Square Error). It offers
insight into the potential room for improvement in our
selection techniques.

• Selection (Random): As a contrasting method, this ap-
proach randomly selects a module for each data record.
We executed this method 1,000 times and reported the
mean outcome, allowing us to gauge the significance of
our selected methods compared to a random choice.

As a baseline, we introduce a benchmark termed “static,” rep-
resenting the current practice in machine learning development
where the optimal module from a set is chosen and consistently
employed. Fig. 3 showcases the modules and the benchmark
results. Among the five modules, the Light GBM exhibits the
best average performance, thus earning its place as the static
benchmark. However, when examining its difference with the
benchmark Selection (BEST-RMSE), it is evident that the
optimal module shifts over time. To illustrate this, we provide a
detailed view of the daily mean absolute errors of each module
in Fig. 4, capturing a week from 2017. This demonstrates that,

2www.kaggle.com/code/robikscube/time-series-forecasting-with-prophet
3www.kaggle.com/code/robikscube/tutorial-time-series-forecasting-with-xgboost
4www.kaggle.com/code/alirezajavid1999/energy-consumption-prediction-timeseries-

analysis

https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
https://www.kaggle.com/code/robikscube/time-series-forecasting-with-prophet
https://www.kaggle.com/code/robikscube/tutorial-time-series-forecasting-with-xgboost
https://www.kaggle.com/code/alirezajavid1999/energy-consumption-prediction-timeseries-analysis
https://www.kaggle.com/code/alirezajavid1999/energy-consumption-prediction-timeseries-analysis


Fig. 3. Modules and benchmarks performance

Fig. 4. Daily mean absolute error of modules from a week of 2017 in gigawatt.
The red arrows point to the best module, with its name located beneath the
date on the X-axis label.

despite LightGBM’s average superiority and the availability
of 15 years of training data, no single module consistently
outperforms the others at every moment. As a result, the best
module selection can differ, underscoring the importance of
informed decision-making for different periods.

The selection algorithm applies the rolling average policy
when the threshold (θ) is set to zero. Setting this threshold to a
positive non-zero value applies the KEEP policy. For the LBS
implementation, we employed the LightGBM model due to its
superior performance on this data. This model was retrained
using the same hyperparameters previously optimized for
power prediction, but now to predict the selection sequence.

C. Results

We executed our selection algorithm using varied parame-
ters to assess their effects. In these evaluations, we incorpo-
rated both the RMSE (Root Mean Square Error) and “Average
Hold Time.” For a clear depiction of these trends, we employed
dual-axis plots. The left axis, highlighted in orange, represents
the RMSE, while the right axis, in blue, shows the average
hold time in hours. The X-axis denotes the adjustable param-
eter specific to each adaptation policy, particularly, windows
size k and threshold θ for Rolling Average and KEEP policies,
respectively.

Fig. 5.a delineates the performance of the rolling average
policy for different window sizes. The optimal RMSE is
achieved when using a window size of one. This observation
implies that decisions based on the most recent data record

frequently yield the best results. It indicates a strong corre-
lation between consecutive data points, resulting in RMSE
values closely approximating the best achievable performance.
Conversely, enlarging the window size tends to decrease
the frequency of module changes, consequently lowering the
expenses linked to redeployment.

We set the window size to one for the KEEP policy
evaluation since it performs the best according to previous
experiments. The findings are illustrated in Fig. 5.b. As antici-
pated, an increase in the threshold results in fewer changes, but
this is at the expense of a deteriorating RMSE. Notably, this
policy can offer enhanced performance at comparable change
frequencies with respect to the rolling average policy.

To better facilitate comparison of these two policies, Fig. 6
presents a two-dimensional plot of RMSE versus average hold
time using the same data points presented in Fig. 5. Optimal
performance is achieved when points lie towards the bottom
right corner, as this represents lower RMSE and higher rates
of change. For instance, at a 5% threshold, the average hold
time stands at 9.4 hours with an RMSE of 2506. In contrast,
using the rolling average approach to achieve a similar RMSE
of around 2500 necessitates redeployment every 5 hours using
a 4-hour window size.

We tested our Learning-Based Selection (LBS) method
against two benchmarks: the Best-RMSE and the KEEP adap-
tation policy as shown in Fig. 7 and Fig. 8, respectively.
For the KEEP policy, we set the window size k = 1 and
the performance threshold (θ = 5%), as these parameters
typically provide satisfactory results. The primary variable in
our experiments was the point in time when we began to apply
LBS, meaning the quantity of data available for training LBS’s
model selection framework. In the illustrations of results,
dashed lines illustrate benchmark values. It is important to note
that the goal of the LBS model is to learn the selection pattern
rather than directly predict RMSE and Average Hold Time.
These metrics are consequential to the accuracy of LBS’s
module selection.

As depicted in Fig. 7, for the Best-RMSE benchmark, two
years of data from running “what-if” scenarios can deliver
an RMSE close to 2500, with an average hold time of ∼3.1,

Fig. 5. Rolling average and KEEP selection policies performance: In
subfigures a) and b), the red circle and black diamond represent the same
data points.



Fig. 6. Rolling average and KEEP selection algorithms comparisons. Optimal
performance occurs towards lower RMSE and higher rates of change.
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Fig. 7. LBS performance trained on Best-RMSE selection benchmark over
varying training spans.

roughly equal to the benchmark. A similar trend is observed
in Fig. 8 for the KEEP policy, where, using the LBS method
eliminates the need for additional experiments while providing
comparable results after approximately one year. There’s an in-
herent performance trade-off: more extensive training typically
enhances performance. However, as previously mentioned, the
incremental benefits may not justify the costs of continuous
what-if scenario testing. Despite this, the decision-making
process tends to improve in both RMSE and average hold
time as more data becomes available.

Furthermore, the LightGBM model’s performance, utilized
within the LBS framework, underpins this observation. Fig. 9
shows that accuracy trends correlate with RMSE and average
hold time improvements. In the initial stages, with limited
data equivalent to just one month (or 0.08 years), the LBS’s
selections are nearly random, but accuracy improves as it is
trained on more data up to the point where further experiments
bring little to no additional value for the selection task.

Moreover, it’s particularly noteworthy that the KEEP policy,
which is characterized by less frequent switching between
modules, achieves a higher accuracy rate in comparison to
the Best-RMSE benchmark, which tends to oscillate more
frequently. This indicates that a consistent adaptation policy
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Fig. 8. LBS performance trained on KEEP policy over varying training spans.
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Fig. 9. LBS accuracy of predicting the selection sequence over varying
training spans.

like KEEP can leverage LBS to minimize switching and
experimentation expenses, albeit potentially compromising
performance metrics such as RMSE.

V. CONCLUSION

In the evolving Machine Learning (ML) realm, deploying
modules effectively for streaming data remains challenging
due to the continuous evolution of both models and input data.
To tackle this challenge, we introduce a self-adaptive system
designed to dynamically select machine learning modules in
streaming data processing. This system manages the delicate
balance between module performance and redeployment costs.
Guided by the MAPE-K model, our approach monitors ML
module performance on both production and experimental
data, selecting the most suitable module based on observed
performance metrics. The inclusion of a “what-if” scenario
mechanism enables continuous evaluation of available mod-
ules. We designed a selection algorithm to implement two
adaptation policies intelligently to determine the optimal mod-
ule for the incoming data. Utilizing a learning-based approach,
our system’s efficiency is enhanced by identifying selection
patterns, consequently discontinuing additional experimental



data gathering. The algorithm and the learning-based method
are complementary for optimizing performance, redeployment
costs, and computational power.

The efficacy of our system in fluctuating streaming scenarios
was demonstrated through an energy consumption forecasting
use case. The employment of the KEEP adaptation policy
was found to be superior to both static module selection and
ensemble methods. This policy offers flexibility, allowing users
to tailor the system’s responsiveness to balance performance
against the increased costs associated with more frequent
redeployment. The approach is enhanced with a Learning-
Based Selection (LBS) method method. When the pattern
of optimal choices remains stable or a suboptimal decision
isn’t critical, LBS stands out as a recommendation to reduce
computational expenses. Future directions include refining
selection algorithms, delving deeper into the integrated KEEP-
LBS methodology, optimizing retraining periods, investigating
sampling mechanisms, and expanding the system’s applicabil-
ity across diverse domains and use cases.
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