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Abstract. Conventional digital twins (DT) for critical infrastructures
are widely used to model and simulate the system’s state. But
fundamental environment changes bring challenges for DT adaptation
to new conditions, leading to a progressively decreasing correspondence
of the DT to its physical counterpart. This paper introduces the DiTEC
system, a Digital Twin for Evolutionary Changes in Water Distribution
Networks (WDN). This framework combines novel techniques, including
semantic rule learning, graph neural network-based state estimation, and
adaptive model selection, to ensure that changes are adequately detected,
processed and the DT is updated to the new state. The DiTEC system is
tested on the Dutch Oosterbeek region WDN, with the results showing
the superiority of the approach compared to traditional methods.

Keywords: Digital Twin · Water Distribution Networks · Rule Learning
· Change Adaptation · State Estimation · Adaptive Model Selection.

1 Introduction

Conventional digital twins (DT) create a representation model of the physical
world, recreating its diverse aspects [31]. The main DT requirement is to
synchronize the state of a physical counterpart with its virtual representation,
using internet of things (IoT) sensors and actuators. The synchronization link
is continuously maintained, allowing to experiment, simulate and optimize the
properties of the physical twin (PT) at any time. The real-time bi-directional
communication link with the PT is one of the main distinguishing features of
the Digital Twin paradigm from earlier concepts of digital simulation models.

Critical infrastructures, such as Water Distribution Networks (WDNs), exist
in a changing environment. The ability of the DT to adapt to change is important
⋆ Except the first author, authors are listed in the alphabetical order.



2 V. Degeler et al.

to ensure the longevity of the created DT model, whether it comes from the
data values (e.g. drought resulting in unusually low water levels), changing
data distribution (e.g. climate warming changing yearly weather patterns), new
physical structures or conditions (e.g. maintaining a piping system or adding
a new neighborhood). Indeed, the most common reason for low accuracy in
production-scale machine learning systems is that they no longer correspond to
the data they were trained on, leading to model decay known as concept drift [3].

In WDNs, to make sure that clean and safe water is delivered timely to all
locations, the extensive physical network of pipelines is controlled with valves,
pumps, boosters, and reservoirs to direct the flow of water. The configuration
of these assets must be carefully managed. Elaborate mathematical simulation
systems, such as EPANET [29] and WNTR [22], that are based on the physical
properties of water flows are currently employed to simulate the state of
WDNs. But these mathematical simulation systems are limited, as scenarios for
simulation must be manually defined and for that, the state of the physical world
must be fully known. Any environmental change, such as a water leak, changed
consumption demand, or worn-out valve, negatively affects the simulation
accuracy, or completely invalidates it. Similarly, any network changes (e.g. in
the pipeline topology, maintenance activities) require a costly and slow process
of model recalibration and validation. Careful consideration by a human expert
must be provided to choose the specific calibration and validation scenarios.
Besides physical inspections of the network, the way to realize that the simulation
is obsolete is by comparing simulated values to the real-time sensor data. If they
diverge, it means the simulation’s configuration is wrong and a new model needs
to be selected. Unfortunately, there is no straightforward way to understand
what this new model must be just by looking at the sensor data. Therefore,
intelligent state estimation models, such as the one described later in this paper,
must be employed to ensure that the correct state of the environment and new
configuration for the simulation model can be found.

We present a use-case of engineering a DT for WDNs, introducing the DiTEC
system, a Digital Twin for Evolutionary Changes in WDNs. We argue that
such a DT must contain a number of additional characteristics to ensure that
it can withstand environmental change without any loss of its usefulness and
precision. The main contributions of this work include creating a new change-
resistant DT framework, using the ontological data representation to learn a set
of rules that clearly describe the behavior of the system and can change with
time, showing that graph neural networks can be used for state estimation given
the minimum available sensor information, and unfolding the full architectural
process of adapting the DT to a change, including the change detection, running
what-if scenarios, and adaptive new model selection.

In Section 2 we present the related work. Section 3 presents the architecture
of the proposed DT system, while Section 4 motivates and discusses the main
modules in detail. The validation on the real WDN of the Oosterbeek region in
the Netherlands is presented in Section 5. Section 6 discusses the main trends
and challenges in the current DT systems, and Section 7 concludes the paper.



DiTEC: Digital Twin for Evolutionary Changes in WDNs 3

2 Related Work

Critical infrastructures are among the main application areas of DTs due to
their higher need for protection and management. Recent examples include DT
implementations from a cyber-security point of view to simulate and mitigate
potential cyber threads [24], for improving the performance of edge AI devices
in terms of computation and network delay with a smart task allocation
mechanism [9], and to increase the resilience of the critical infrastructure to
unforeseen events [6]. Two recent DT implementations for large cities’ WDNs
are in Valencia [8] and Lisbon [27]. Both studies provide a set of WDN DT
requirements, example applications such as leak detection and localization, and
highlight the use of AI techniques. These existing systems overlook the increasing
usage of semantic technologies in DTs [19], which are used to model DT systems
and data, facilitate semantic interoperability, and for semantic inference.

With the integration of cyber-physical units, the DT solution can offer more
evolutionary services, encompassing real-time monitoring, deeper analysis, and
decision-making. Concretely, the solution leverages such units to estimate state
variables of a physical ecosystem, such as electrical vehicles [26], power grids [5],
and traffic networks [23]. Nevertheless, challenges persist as these variables often
suffer from incompleteness and unreliability due to the data explosion, noise
transmission, and the lag between the deployment of cyber-physical units and
the extensive scale of such systems.

To mitigate the issue, two influential approaches are model-based and data-
driven state estimations. The model-based approach relies on mathematical
models empowered by differential equations and conservative physical laws
to compute more reliable state variables under known conditions [22, 29].
Conversely, the data-driven approach employs machine learning algorithms and
optimization techniques on sensor flow to infer states beyond initial settings [15].
In our study, we seamlessly integrate both approaches to create a hybrid solution
that accurately estimates states in either historical data or unforeseen scenarios.

In cases where we have several models addressing the same task, the challenge
lies in selecting the most appropriate model for the current situation [28].
Some work in the service-oriented computing domain addresses it by adaptively
selecting services for tasks [36], where services and models can be deemed
equivalent. But their focus is on optimizing non-functional requirements, such as
response time, rather than functional requirements, like the accuracy of models
or other performance measures. In contrast, our focus is on optimizing functional
requirements while respecting non-functional ones. Our approach is tailored to
capture the probabilistic nature of machine learning solutions.

3 Digital Twin System Architecture

In this section, the general architecture of the DiTEC system is discussed.
We introduce and briefly discuss the main system modules and their
interconnections. The next section describes these modules in detail, while



4 V. Degeler et al.

Fig. 1: The DiTEC system’s main blocks

Section 5 shows their validation on a real use-case of a WDN in the Dutch region
of Oosterbeek. The high-level architecture overview is presented in Figure 1.

The target physical environment that we aim to model consists of a
closed system WDN. Normally, a WDN conceptually starts with the effluent of a
drinking water treatment plant or a reservoir. From there, the water is pumped
into the WDN and, through a physical net of pipes, end at final distribution
points, such as homes, factories, hospitals. When the system is not fully closed
and contains a number of connections to the world outside of our modelling
target, such as if we only model a separate district in a bigger water network,
these connections must be rigorously modelled as well with a set of input/output
variables. They can include other entities that affect the functioning of the
network, e.g., weather, calendar of big events, maintenance schedule.

The static information about the environment is represented as a collection
of asset descriptions. This description is domain-specific and contains the
characteristics of the entities and the relations between them. E.g., assets
represent the existence of pipes, having as parameters pipe diameter, pipe length,
pipe roughness, and being related to junctions, which are different entities,
connecting several pipes together. Parameters can represent static values, such
as pipe length, and dynamic values, such as water pressure. Representing the
complexity of a domain through asset descriptions is not straightforward. Simple
variable hierarchies and collections fail to capture complex relations between
them, while tabular data may be suited for specific parts of the system, but
is often not suited due to the uniqueness of many system objects, and their
semantic richness which is hard to efficiently represent with tables. On the other
hand, using domain-specific ontologies and populating them with data from the
exact system to obtain knowledge graphs (KG) gives an excellent solution to
the complexity of data representation and allows keeping the needed semantic
information in the DT. While static values can be adequately described with only
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asset descriptions, the dynamic real-time information about the environment is
collected with sensors and is normally referred to as time series sensor data.

Physical simulations are often employed in systems where complex
physical phenomena have well-defined mathematical formulations. In WDNs,
existing physical simulation tools allow simulating water flows precisely and
in detail, given the complete asset descriptions and demand patterns. But the
requirement to know the exact physical state of a multitude of parameters is
often impossible to achieve in practice, which limits the applicability of physical
simulations. Therefore, DL-based state estimation models have proved their
indispensability for being able to restore the exact state of unobservable parts of
the environment from sensor data, without the need for additional calibration.
Advanced state estimation mechanisms allow us to fully reconstruct the original
state of the environment, therefore creating a complete environment digital
twin. This DT uses the knowledge base to represent the current system’s
state, to store the historical states, and, using the simulations, and what-if
scenarios, to glimpse into the possible future states. Capturing the system’s
behavior patterns in complex physical infrastructures presents an additional
challenge. Semantic association rule learning is a mechanism of extracting
logical associations between entities while taking into account their semantic
relationships from KGs. Extracted rules represent clearly explainable human-
understandable logical connections, expressed in high-level semantic notions.

The fundamental external conditions and the system’s internal behavior
change over time, representing data or concept drift, which affects learned rules,
making some of them invalid, or introducing new ones. This can be captured
with change detection mechanisms, by tracking the state of the system and
comparing it against the learned rules. If a fundamental change is detected, the
what-if scenarios can be employed to find the effect of the new situation on the
current learning models. Adaptive model selection allows finding the best-
performing model that corresponds to the current conditions. The DT is updated
to the new model with Orchestration, which is also responsible for managing
the necessary changes for execution in the environment while maintaining the
system standards. Moreover, Alerts and dashboarding enables real-time issue
detection and visualization for quick response and informed decision-making.

4 System Model

4.1 Data Preparation

Data preparation activities include processing diverse data sources to be
available for further usage in our Digital Twin (DT) system model.

Asset Description. Assets involve all pieces of information related to the
modelling counterpart, categorized into physical and virtual. Physical assets
include constructed components of target systems, e.g. vehicle wheels, brakes,
body, and engine, each associated with detailed information (model, brand,
material, etc.). They contain relevant data about the physical environment,
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such as geographical locations, maintenance reports, and socioeconomic factors.
The physical assets remain relatively unchanged throughout the PT lifecycle.
Virtual assets comprise simulation-related parameters and generative products,
exemplified by Building Information Modeling (BIM) and 3D models [25].

In WDNs, all informative data is primarily stored in a virtual asset, an input
(INP) file, which describes the properties of infrastructural components. A WDN
embodies an undirected graph. Nodes represent junctions – demand points, water
sources like reservoirs, and extra supply storage like tanks, whilst edges symbolize
connecting pipes, valves, and discharge pumps between two nodes. Each element
also obtains its own set of sophisticated attributes, e.g. pipe is associated with
roughness, diameter, and length. Moreover, the INP file contains simulation-
related parameters that allow practitioners to run synthetic scenarios, especially
in unexpected scenarios such as pipe leaks, earthquakes, and fire hydrants [22].
Concretely, some critical parameters (e.g., junction demand, reservoir heads, and
pump curves) expressed as dynamic patterns can be fed into a simulation tool
to replicate a lively network in a fixed time. This benefits further analysis and
understanding of the actual WDN. In light of this, the INP file, encompassing
the overall network information and the attached simulation ability, has become
a standard format widely used and shared across the research community.
Time Series Sensor Data is used to obtain the latest state of the PT. Data
in this form gives information about the system components or its environment.
The source of the data can be physical or virtual sensors, as well as external
sources such as weather forecast channels. It is coupled with a timestamp which
refers to the time of measurement or value obtained from a source. Time series
data is the main data source for a majority of operations performed in a DT
including monitoring, detection, and reasoning tasks. In the case of WDNs, water
flow, water pressure, height of water in water tanks, and conductivity of the water
are the major time series data sources.
Knowledge Graphs. Semantic technologies such as ontologies and knowledge
graphs (KG) are being increasingly used in DTs, for semantic interoperability,
semantic reasoning, and system/data modeling [19]. An ontology in this context
describes physical and digital entities and their relation in the system and
its environment in a formal way. KGs represent instances of those entities
and relations based on the underlying ontology. We argue that KGs can be
further utilized in learning and reasoning tasks, especially when combined with
time series data. In our system model, each time series data source has a
representation in the KG, hence providing context to time series data simply
by looking at their adjacent nodes and relations on the graph.

4.2 Learning and Reasoning

Learning and reasoning tasks are used to better understand the current state of
the system, and create actionable insights to be used in decision making.
Physical Simulations serve as a crucial tool for conducting in-depth analysis
and manual calibration by domain experts of physical entities, such as complex
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infrastructures or objects post-disaster. These entities pose challenges in
monitoring and further exploration. Conventional simulation of WDNs offers an
overview of the virtual water network, allowing experts to gather insights under
diverse conditions, such as customer demands, nodal pressure, and pipe velocity.
The virtual replica is constructed with initial parameters derived from the asset
description, then obtaining the measurements with a hydraulic simulation tool,
e.g., EPANET [29] and WNTR [22]. DT can simulate and replicate rare incidents
such as leaks, pipe bursts, and sensor malfunctions with a minimal cost.

Although physical models have been very influential, they have several
drawbacks in calibration, simulation flexibility, and benchmark comparison.
These models need a calibration process to maintain data consistency with the
physical counterpart, but the process relies on domain expertise. In addition,
physical simulations are robust only in adjusting dynamic factors (e.g. patterns)
while inflexibly varying static ones (nodal elevation, tank diameter, valve
settings, etc.). Also, dynamic factors are often associated with privacy and
security concerns, so they are frequently hidden in shared configurations of the
simulation input available for open research [33]. Even a minor discrepancy in
the configuration file can lead to significant divergence in simulation outcomes.
Such issues not only hinder the simulation ability of DT in replicating rarely-seen
scenarios but also portray a lag of development in reproducibility and credibility.

Physical simulations can alternatively be leveraged to generate a
comprehensive dataset of scenarios derived from available WDNs and diverse
configurations [32]. The dataset effectively alleviates concerns about security
and safety, as all data reside in a synthetic space. Moreover, a sizable dataset
allows researchers to train recent data-driven DL models, which typically require
extensive data inputs, and apply them to WDN-related tasks. Sharing this
dataset offers a favorable method for comparing WDN research outputs.

State Estimation provides a complete view of the status of a system at
any given time. In the context of WDNs, the state comprises the values of
demand, pressure, and flow for every node and pipe in the system. Usually,
only a limited number of sparsely located sensors are installed in a WDN. Thus,
the state at all other locations needs to be estimated in order to be able to
optimize the operation of the network [33]. This facilitates near-real-time control
and monitoring tasks to ensure the healthiness of the WDN. Conventionally,
state estimation is performed using physics-based mathematical simulation tools.
Then, a manual calibration process is used to match the estimated values with
the known ones provided by the sensors. In the case of DTs, we propose a
DL data-driven approach. The simulated data described in the previous section
serves as input to train the state estimation models. Then, likewise physics-based
approaches, the models should be evaluated on the known sensor values.

We propose that state estimation models can be trained using the simple,
yet very effective, masking technique [14]. It consists of hiding part of the input
data from the model and learning to predict those missing parts. The values
are “removed” from the input using a binary vector mask m = {m1,m2, ...,mk},
where mi ∈ {0, 1}, whose elements are sampled from a binomial distribution.
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Thus, P values will be hidden from the model with probability p, and Q values
will be shown to the model with probability q = 1 − p. Then, the models learn
to predict the missing values using gradient-based optimization methods [21].

To assess the validity of the state estimation models the evaluation strategies
should consider ground-truth data provided by the sensors and take into account
the uncertainties of real-world scenarios [33]. The data created with the physics-
based calibrated models becomes the ground truth for model testing, as those
computed states match the sensors’ measurements. Such models do not include
uncertainties and resemble network operations under normal conditions. Then,
after applying random masking for every snapshot in the calibrated data, we use
the trained model to reconstruct the WDN states. We can statistically measure
the performance of the state estimation models under normal conditions, by
repeating this process N times with a different mask. While this approach gives
us a good indicator of model performance, the uncertainties intrinsic to real-
life scenarios may significantly affect those results. Hence, instead of using the
calibrated data as it is, Gaussian noise is added to the input parameters of the
simulation before creating the testing data. Then, applying a different mask for
every snapshot and repeating this process N times allows us to measure the
performance of the state estimation models under uncertain conditions.

Finally, state estimation models should be designed with three important
capabilities to allow DTs to fully address the challenges inherent to their physical
counterparts: generalizability, adaptability, and robustness [33]. Generalizability
equips the models with the ability to make predictions for any WDN topology,
even on a completely new and unseen network during the model training
phase. Adaptability refers to the ability of the model to maintain its predictive
performance under unexpected changes. The changes here are associated with
the sensors’ locations. Sensors can be added or removed for maintenance,
planned extension of the network, or sensors’ malfunction. The state estimation
models should be able to deliver the same performance under the presence of
these changes. Robustness to changes in the data. In real-life scenarios, the
observations can change due to unexpected circumstances, e.g., unexpected
changes in demand due to COVID-19, discrepancies between simulated and real
data, and noisy data due to sensors’ malfunction. The models should be robust
to these changes and keep the performance under unexpected conditions.

Rule Learning. It is the process of learning commonalities in a given dataset
in the form of logical statements. Rules represent ‘expected’ working conditions
of the physical system. One specific type of rule learning that we focus on is
learning associations in implication form such as X → Y , meaning ‘if X, then
Y’. The antecedent X refers to a set of statements, and the consequent Y refers
to a single statement. In the case of DTs, rules can be learned from both time
series data and KGs at the same time [17, 18], hence, the literals are based on
semantic properties in the KG as well as time series data.

An example rule learned from time series data only in the WDN domain is
as follows: ‘if sensor1 measures a value in range R, then sensor2 must measure
a value in range R2’. With semantic properties from the KG, more generalizable
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and explainable rules can be learned: if a sensor with type T placed inside a
Pipe P measures a value in range R, then another sensor with type T2 inside a
Junction J that is connected to P must measure a value in range R2. The rules in
the first form are specific to sensor1 and sensor2. The rules in the second form no
longer correspond to individual sensors and are more generically applicable and
explainable due to the semantic properties. Rules also allow for easy integration
of the domain knowledge into the system which can be done via KGs.
Change Detection module utilizes semantic association rules to detect changes
in the physical system that are not yet reflected in the DT. It constructs
subsets of rules which are referred to as ‘hypotheses’ that can point out certain
types of changes in the system such as leak detection, detecting malfunctioning
components, as well as architectural changes such as adding or removing
components. This is done by checking whether the rules in the hypothesis hold or
do not hold for a certain period of time. Expert input can also be incorporated to
mark automatically detected changes as valid or not. The validity of hypotheses
as well as rules are maintained regularly as new data is received.
What-If Scenarios This component tries to answer the hypothetical questions
of “What if something was different” [10]. It can be a part of the environment
that is controllable by operators, or an uncontrollable factor like weather. It can
be a change in the data distribution, signifying concept drift. It can also be a
change in the machine learning model, its configurations and hyper-parameters.
What-if scenarios are generated to answer these questions either automatically
or by experts in the loop. They are executed in ephemeral and isolated software
environments4, ephemeral for resource utilization purposes on the hardware
infrastructure and isolated to allow proper experimentation without interference
from other executions. The whole process is an optimization problem to find an
optimal setting for the variables to utilize the objective function.

4.3 Decision making

Adaptive Model Selection. Both internal and external factors of our DT
system are continuously changing, the real world may experience data or concept
drift. New machine learning models are being frequently developed to handle
data processing tasks. Knowing that the new models might not always be a
better model and since both data and models are changing, it is unclear which
model performs better on which data. This component addresses the problem of
selecting the optimal model for executing a specific task on specific data. The
system collects information on the models’ performance to the knowledge base.
This information can be the result of executions of what-if scenarios, or the actual
run of models in the production software environment. From the knowledge base,
we can extract the performance measures of models on different characteristics
of data. Using this information, our system continuously evaluates the current
models’ performance and incoming data to adapt to changes. As part of the
realization of our solution, we designed the KEEP algorithm to (Keep Errors
4 https://ephemeralenvironments.io/

https://ephemeralenvironments.io/
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down with Enhanced Persistence) [11]. It is a heuristic algorithm that assesses
models’ performance by examining a window of the K most recent data points,
predicated on the understanding that the current situation is closely correlated
with these points. We adopt a window approach to leverage the benefits of
averaging mechanisms in oscillations between models. KEEP compares the
performance gap between the optimal model and the one currently in production,
initiating a switch only when the gap exceeds a specific threshold.
Orchestration component is responsible for orchestrating the DT and PT
environments, and the system’s components. Based on the decisions from
the adaptive model selection, it orchestrates the software models in the DT
environment through cloud computing technologies like Kubernetes. Moreover,
it implements control actions in the physical environment, either directly
or indirectly through human intervention. Finally, it maintains the system
components to uphold the service level agreements.
Alerts and Dashboarding are essential for the DT systems, enabling real-time
monitoring from data entry to model outputs and triggering notifications for
users or system action on detected issues. Integrated tools for alert management
and data visualization ensure rapid issue identification and understanding of the
system’s status. This functionality ensures prompt responses to concerns and
informed decision-making for system management.

5 Validation: WDN Digital Twin in Oosterbeek

Our DT model is validated on a WDN in Oosterbeek, a place in the east of the
Netherlands, province Gelderland. First, we describe Oosterbeek in general, then
describe in detail our implementation of the main DT modules for its WDN.

5.1 Oosterbeek’s WDN description

The Oosterbeek’s WDN is one of the many balance area managed by Vitens,
the largest water company in the Netherlands. In 2022, Vitens supplied 1.89
million m3 of drinking water in this area to approximately 30,200 residents.
The Oosterbeek area is largely rural and wooded. It is situated north of the
Lower Rhine River and west of Arnhem. The height varies from 9 meters above
Amsterdam Ordnance Datum (AOD), close to the river, to 76 meters above
AOD, further north. The highest water connection is at 67 meters above AOD.
Most of the population lives in the villages of Oosterbeek (11,000 inhabitants),
Renkum (9,100), Doorwerth (4,900), Heelsum (3,500) and Wolfheze (1,700). On
the Lower Rhine, there is a paper mill as the largest water user in the region.
The water is mainly produced by the production facility (PF) “Oosterbeek”, with
a maximum capacity of 11,856 m3. This PF also has a supply function from its
reservoir to parts of Arnhem. It has an onward delivery of the water originating
from the PF “Fikkesdries”, on the south side of the Lower Rhine. “Fikkesdries”
is also a backup in the event of a disruption in the PF “Oosterbeek”. The PF
“Wageningseberg” is located just west of the area and can supply water during
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emergencies. The PF “La Cabine”, north of Oosterbeek, supplies 10 to 25 m3 per
hour of drinking water to the area. In the network, pressure reducers are present
to manage pressure in low-lying areas. The area has a reservoir of 13,322 m3.

The natural landscape of the Oosterbeek region is sensitive to drought. A
large population increase is not expected in the area, but longer periods of
extreme weather, such as drought, can increase annual water consumption.
It is expected that water resources in the deep subsurface will decrease5.
All water PFs can have less water as a backup. If surplus water from the
surrounding areas is needed in the future, water has to be pumped from far away.
Energy consumption will increase. That is an undesirable development of the
water company’s climate footprint. To diminish water and energy consumption,
importance is attached to insights into the water distribution in the balance area,
with focus on water which is produced, but not delivered to the customers. The
aim is to minimize disruptive and latent leaks and pumping water unnecessarily.

Fig. 2: Oosterbeek’s water network
graph

Fig. 3: Partial knowledge graph of Oosterbeek
WDN.

In modelling, Oosterbeek WDN, shown in Figure 2, consists of 5,855 nodes
and 6,188 links. These nodes comprise 5 reservoirs supplying drinking water
to 5,850 junctions, representing residential and industrial zones. The network
also includes 5,157 pipes and 1,031 valves as connection links. Each component
derives its attributes from either internal infrastructure data, Asset Description,
or external sources. For instance, nodal elevation data is sourced from public
geographic information systems like AHN and USGS6. Dynamic properties, such
as customer demand patterns, are calculated by using average water consumption
patterns, which are adjusted based on local characteristics. Large industrial
consumers have meter readings and their patterns are added to the model
individually. Due to infrastructure constraints, 16 unique demand patterns are
shared across individual junctions, albeit with varying scaling factors to maintain
the diversity. Lastly, 9 sensors, equipped throughout Oosterbeek, provide crucial
insights into pressure and flow information, essential for calibrating the virtual
replica before deployment in downstream applications.

5 https://publications.deltares.nl/11209219_hoofdrapport.pdf
6 www.ahn.nl/hoogtegegevens, www.usgs.gov

https://publications.deltares.nl/11209219_hoofdrapport.pdf
www.ahn.nl/hoogtegegevens
www.usgs.gov
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Fig. 4: An example knowledge graph construction process for WDNs.

5.2 Data Preparation

Rule learning, change detection, and what-if scenarios use semantic information
provided by the KG. KG construction using the domain ontology and asset
descriptions. At the moment, there is no standard domain ontology for WDNs. A
Large Language Models (LLMs)-based methodology to develop a WDN ontology
is in progress. Research shows that LLMs can automatize one or multiple steps of
ontology construction [2] processes which reduce the required manual effort and
potentially make ontologies more accessible in various domains. Besides a domain
ontology, data schemas can be used in KG construction [30]. For Oosterbeek, we
used EPYNET’s7 class hierarchy to construct a KG, as shown in Figure 4. Asset
descriptions, given inside the INP file, are parsed using WNTR [22]. A node is
created per asset, and nodes are linked as described in the asset descriptions,
in this case, pipes connect other assets. Lastly, a node is created per sensor and
attached to the corresponding node in which the sensor is placed. Part of the
Oosterbeek KG is given in Figure 3. The KG is a property graph and stored
inside a Neo4j8 database. The red nodes represent junctions, light brown nodes
represent pipes, purple nodes represent valves, and blue nodes represent sensors
in the KG. In total, there are over 12.000 nodes in the Oosterbeek KG.

5.3 Learning and Reasoning

State Estimation. Implementing a DL data-driven model, particularly
for state estimation on WDNs, demands to address three critical factors:
input modelling, model architecture, and evaluation protocol. A good input
representation can accelerate the model training and benefit the inference when
encountering unseen data points. When selecting a feasible model architecture
that fits the state estimation problem, numerous families of DL models exist,
such as convolution, recurrent, and self-attention networks. But our study opts
7 https://github.com/Vitens/epynet
8 https://neo4j.com/
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Table 1: Model comparison in 24-hour Oosterbeek WDN with a 95% masking rate,
adopted from [33].

Model #Milion
Params

(↓) MAE(↓) MAPE(↓) NSE(↑) Acc(@0.1)(↑)

GCNii [7] 0.65 6.357±0.0197 0.2147±0.0008 -0.0137±0.0061 38.48±0.1351

GAT [34] 0.35 3.726±0.0120 0.1287±0.0008 0.3276±0.0037 73.52±0.0900

GraphConvWat [12] 0.92 3.067±0.0077 0.1160±0.0004 0.6938±0.0020 69.92±0.1205
GraphConvWat-tuned 0.23 2.293±0.0087 0.0821±0.0005 0.7518±0.0024 83.03±0.1025

mGCN [1] 2.48 2.111±0.0085 0.0806±0.0003 0.7100±0.0030 84.05±0.0693

GATRes-small (ours) 0.66 1.937±0.0074 0.0703±0.0005 0.7773±0.0025 87.48±0.0761
GATRes-large (ours) 1.67 2.020±0.0132 0.0711±0.0003 0.7864±0.0031 84.33±0.1347

for Graph Neural Network (GNN) due to the inherent focus on graph data which
naturally expresses the structure of water networks. Model evaluation needs to
be explicit and well-designed, so we introduce a testing approach for models
trained largely or entirely on a synthetic dataset.

In input modelling, the state of a WDN at any timestep is represented as
an undirected graph, whose nodes denote reservoirs, junctions, or tanks, whilst
edges indicate links, pumps, or valves. In the scope of this study, we focus
on solving the univariate state estimation task and the target nodal feature
is pressure. Nevertheless, the framework can be extended to another measure
(e.g., demand or pressure head) or estimate multiple variables simultaneously.

After conversion, a dataset containing numerous network states represented
as graphs can be input into a DL-based model. Yet, even with all available sensor
data samples from existing WDNs, such an amount is still insufficient for training
a high-quality deep model. To mitigate the problem, physical simulation is
employed to generate synthetic states, with a crucial assumption that these states
are obtained in supposedly common situations. Concretely, we alter potential
dynamic parameters with diverse configurations beyond the capability of a
conventional model, still within the allowed boundary. This approach alleviates
the data-hungry issue in training deep models and offers diversity to the dataset.

Having acquired training data from the previous step, we establish a semi-
supervised training scheme for the deep model. As outlined in Section 4.2, the
input nodal feature (pressure), is disturbed by hiding several nodes with a
masking ratio up to 95%. The deep model leverages the remaining available nodes
(sensors) to estimate the pressure values of masked nodes. Errors derived from
predicted and ground truth, guide the model to update its weights. Our model
GATRes [33], a specialized Graph Autoencoder tailored for state estimation in
WDNs, is employed for this purpose.

For model evaluation, GATRes and other baselines are tested on data from
the Oosterbeek WDN recorded at 5-minute intervals over a 24-hour period, with
only 5% of sensor nodes observable. The used metrics include mean relative
percentage error (MAPE), mean absolute error (MAE), Nash-Scliffed efficiency
(NSE), and a customized accuracy determined by the ratio of positive predictions
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within a defined threshold δ (δ = 10%) from the true values (Acc@0.1). In our
results, illustrated in Table 1, GATRes consistently outperforms other GNNs
across all metrics, demonstrating its superior performance.

Rule Learning A DL-based rule learning algorithm AE SemRL [18] is run on
Oosterbeek WDN. The algorithm consists of a pipeline of operations illustrated
in Figure 5. It uses the Oosterbeek KG, time series sensor data, and a binding
that tells the algorithm how the sensors are represented in the KG. The output
is a set of logical association rules as first-order horn clauses.

The first step of the algorithm is to enrich time series sensor data with
semantic properties from the graph. The properties can be based on the item
that the sensor is placed in, as well as its neighbors. Next, semantically enriched
time series data is transformed into vectors by applying one-hot encoding.
The obtained set of vectors is then passed to an under-complete denoising
autoencoder [35] for training. A neural representation of the input data is created
after the training process. The final step is to extract associations between input
features of the trained Autoencoder. This is done by creating a set of test vectors
which are essentially vectors of the same length as used in the training with
marked features. Suppose a forward run on the trained Autoencoder with marked
test vectors results in the successful reconstruction of other features. In that case,
we say that the marked features imply successfully reconstructed features.

Example. Let there be 2 features pipe_diameter = {a, b} and water_flow =
{c, d, e}, referring to the diameter of a pipe and the water flow in the
same pipe, with {a, b, c, d, e} being numerical intervals such as a = [10, 20).
To test whether pipe_diameter being a implies any of the values of the
water_flow features, a test vector t = [1, 0, 0.33, 0.33, 0, 33] with 100%
probability for pipe_diameter(a), 0% probability for pipe_diameter(b), and
equal 0.33 probabilities for the water_flow values is created. Assume that a
similarity threshold of 80% is preset, and a forward run on a trained Autoencoder
with the created test vector t produced [0.94, 0.06, 0.03, 0.1, 0.87] vector. Since
the value that corresponds to water_flow(e) (0.87) is bigger than the preset
threshold, we conclude that pipe_diameter(a) → water_flow(e).

A sample learned semantic association rule learned from the actual
Oosterbeek WDN looks as follows: ‘if a water pressure in a reservoir with a
single pipe connected to it is in between 0-54 water column meter, then the water
flow the connected pipe must be 0-25 CMH.’

The state-of-the-art ARM suffers from big high-dimensional data [20], which
can be the case in a DT as we utilize both sensor data and semantics from KGs
for rule learning. Table 2 shows a concise rule quality (support, confidence, lift,
leverage and Zhang’s metric) and execution time comparison of AE SemRL with
an optimizaton-based [20] ARM algorithm named Harris’ Hawks Optimization
(HHO) [16] and an exhaustive ARM algorithm named FP-Growth [13]. The
results show that AE SemRL is capable of learning high-quality association rules
hundreds of times faster than the state-of-the-art ARM [18].

Change Detection The change detection module is currently under
development and this section summarizes the primary idea. We observed that
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Fig. 5: AE SemRL rule learning pipeline from [18].

not all the semantic association rules learned from the Oosterbeek use case
are directly usable in practice for detecting unforeseen events. As an example,
water flow sensors are only placed inside Pipes, and in the semantic association
rules, we see that every range of water flow measurements is associated with
the node-type Pipe. However, this does not provide valuable information for
detecting changes in the system. Therefore, the first step is to eliminate obvious
associations from the learned set of rules. Second, inferring semantic properties
is not useful for change detection. For instance, ‘a water pipe with a certain flow
rate must have the diameter X’ would not be an actionable rule. The second
step is to filter out rules with semantic properties in the consequent side of a
rule and keep only the sensor measurements in the consequent.

After the initial filtering, there are two major research directions to
investigate. The first is to check for correlations in between subsets of rules
and historical changes such as past pipe leakages. Similar to AE SemRL, this
can be done by training a neural network with the learned set of rules with
historical changes and then looking for associations between them. The second
is to find similarities in between semantic association rules and grouping them
together. After that, the goal is to link grouped rules to the presence or absence
of certain types of changes in a certain part of a WDN.
What-If Scenarios are used to tweak the WDN parameters to find an optimal
setting. We design scenarios to answer questions like “What if we open/close
a valve?” or “What if we change a pump pressure settings?”. Then based on
the results of these experiments, domain experts can perform educated actions.
In addition, we utilize these scenarios to answer questions like “What if another
model was in the production software environment?” or “What if we had executed

Table 2: A rule quality comparison of AE SemRL (max_antecedent=1,
similarity_threshold=0.8), FP-Growth (min_sup=0.1, min_conf=0.8) and
optimization-based HHO (init_population=100, max_evaluations=50000) algorithms.

Algorithm Number
of Rules

Execution
Time (s)

Support Confidence Lift Leverage Zhang’s
Metric

FP-Growth 4130 107.863 0.229 0.95 1.96 0.551 0.066
HHO 21596 143 0.084 0.852 1.013 0.002 0
AE SemRL 774 0.427 0.4 0.911 1 0 0.435
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this model on historical data?” This approach helps to get a better understanding
of our models by contributing to the knowledge base. Thereby, it enhances the
decision of the adaptive model selection component.

Fig. 6: Models, KEEP, and optimal performances
comparison.

Policy RMSE
Always Latest 9.13

KEEP 6.18
Theoretical Best 5.98

Table 3: Evaluating selection
strategies for progressive model
integration.

5.4 Decision Making

Adaptive Model Selection. We conducted two sets of experiments based
on a state estimation example for a 1-year scenario, during which we collected
input and predicted the state every hour, resulting in 8,760 data points. The
first involved having all models operational from the outset, while the second
saw models being progressively developed and integrated into the system over a
year. Figure 6 illustrates the Root Mean Square Error (RMSE) for the pool of
eight models, the best theoretically achievable selection result, and the outcome
of employing KEEP algorithm. GATRes-small emerges as the best-performing
static model on average. In our case, KEEP reaches the same result. The
theoretical best represents the optimal result a selection algorithm could achieve
by selecting the best model for each data point, which in this case is marginally
better (3%). Even though the difference is minor, we might not always know
which of these eight models is superior right from the start. For example, we
might have chosen GATRes-large or ChebNet, which could have resulted in
approximately a 14% deficit. Our KEEP selection algorithm is a solution to
this issue by achieving a result comparable to that of the best static model.

As it is unrealistic to assume that we have all the models already developed
and available from the start, given that GATRes models result from considerable
effort and numerous attempts to refine them. In a realistic scenario, we start
with one model and continuously develop new ones. To simulate this, we
evenly distributed the development of a new model across every 1.5 months.
We conducted our experiments on a random sample comprising 30% of all
8! = 40, 320 possible combinations of the models’ order of introduction.
Table 3 presents the outcomes of this experiment, which, in addition to
KEEP and Theoretical Best, includes another selection policy where the most
recently introduced model is selected for production, based on the established
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assumption that newer models are better. Nevertheless, the results contradict
this assumption by revealing a 35% margin for improvement. Furthermore, our
KEEP selection algorithm successfully narrows this gap, coming within 3% of
the best theoretical selection outcome.

6 Discussion

In the previous sections, we presented the architecture of our DiTEC (Digital
Twin for Evolutionary Changes in Water Networks) system, and discussed
each module in detail. Main data sources to the DT are asset descriptions,
incorporating domain knowledge via knowledge graphs, and real-time sensor
data. We discussed the main learning and reasoning modules, including the
conventional physical simulations, semantic rule learning to extract the patterns
of the system’s behavior, change detection methods and what-if scenarios to
test different possibilities. The central state estimation module can use the
information from these diverse sources to reconstruct the current system’s
state, even when sensor data is limited and large parts of the system are
unobservable, and the physical simulation presents differences with the real-
world due to unknown changed environmental conditions. The reasoning results
are used to adaptively select the best available reasoning model, and execute
control actions though orchestration module. Human-in-the-loop involvement is
essential, so real-time alerts and full dashboarding of the system’s state is an
integral part of the presented DT. Our DT architecture is validated on the real
use-case of the Oosterbeek region, and it is shown that such an approach to
creation of DTs can bring considerable benefits compared to the traditional DT
models. Traditional DTs are more reliant on the pre-defined behavior domain
knowledge, as opposed to learning it via semantic rule learning, and are less
capable of withstanding a change due to being designed for the exact description
of the world. Moreover, the ability of the GATres neural network to combine
training on the real historical data with the diverse physical simulations allows
learning on a wide range of conditions which provides precise state estimation
results. Training with the addition of simulated data also means that confidential
customer data remains protected and that errors in the database across the area
have less impact on the final performance of the system. DiTEC is especially
useful for operational simulations, where a lot of (training) data is available and
many varying conditions require flexibility and robustness. Traditional DTs will
continue to be useful in, for example, strategic considerations. They can calculate
variants for the long-term water distribution prospects and investments to be
made. Ultimately, adaptive algorithm selection can ensure a seamless transition
from one twin to the other, as they both model different aspects of the same
balance area which can have more value integrally.

Logical rules, especially with semantic properties, can provide valuable
insights into how a PT works. Besides more classical approaches such as data
mining and optimization-based methods, rules can also be extracted from neural
representations of a given input data. Combined with semantics, rules learned
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from time series sensor data in DTs represent domain knowledge for which the
DT is created and can then be used to perform various tasks. There are 3
advantages of working with rules in DTs. The first is that Rules are explainable,
which is particularly important when making high-stake automated decisions on
the PT. Making inferences with rules is a simple comparison operation over the
unseen data since they act as a lookup table. In DTs with a high number of
data sources, rules can be highly efficient in detecting changes in the system.
Incorporating domain knowledge into the rules, so in the inference phase, is
straightforward. We have shown, domain knowledge can be represented as part
of a KG that is based on a domain ontology, making both learning and inference
phases to benefit from already existing domain knowledge.

The potential addition to the DT are foundation models, which are trained in
an unsupervised fashion on broad large-scale data and adapted to solve a myriad
of downstream specific tasks [4]. They gained momentum with the advent of
LLMs, e.g., GPT-4, Gemini, and Llama 3. While their unprecedented success has
been mainly exploited in the fields of natural language processing and computer
vision, foundation models for WDNs are achievable by tailoring the existing
technologies to the water domain. One starting point can be pre-training the
GNN models to learn node degree distributions or centrality metrics based on
shortest paths in the network. GNNs have shown generalization capabilities when
trained on such tasks. Pre-trained foundation models can then be fine-tuned to
solve a wide range of domain-specific tasks such as state estimation, demand
forecasting, and leakage detection, among other problems.

7 Conclusions

In this paper we have introduced the DiTEC system and discussed the
importance of engineering digital twins in a way that can withstand changes
in the environment. We have shown the three stages of the DT framework:
data preparation, learning and reasoning and decision making, and discussed
the main capabilities and modules that each layer should have. We discussed
automated domain-specific behavior extraction, achievable with semantic rule
learning, dynamic GNN-based state estimation from minimal sensor data, and
shown transitioning between models over time with adaptive model selection.
Validation of the DiTEC system on the Oosterbeek region have proven its
applicability in real-case scenarios. While the DiTEC system is engineered for
the WDN systems, all of its main modules are applicable to general critical
infrastructures and beyond, as specific domain knowledge is tightly incorporated
into the data sources, such as asset description and the ontology for the KG
creation. The DiTEC system presents significant advancements in the field of
digital twins with its robust change-adaptation framework, ensuring long-term
resilience and efficiency of the critical infrastructures management. Future work
will focus on expanding and validating its applicability in diverse domains.
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