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Abstract Pressure and flow estimation in water distribution networks (WDNs) allows water management
companies to optimize their control operations. For many years, mathematical simulation tools have been the
most common approach to reconstructing an estimate of the WDNs hydraulics. However, pure physics‐based
simulations involve several challenges, for example, partially observable data, high uncertainty, and extensive
manual calibration. Thus, data‐driven approaches have gained traction to overcome such limitations. In this
work, we combine physics‐based modeling and graph neural networks (GNN), a data‐driven approach, to
address the pressure estimation problem. Our work has two main contributions. First, a training strategy that
relies on random sensor placement making our GNN‐based estimation model robust to unexpected sensor
location changes. Second, a realistic evaluation protocol that considers real temporal patterns and noise injection
to mimic the uncertainties intrinsic to real‐world scenarios. As a result, a new state‐of‐the‐art model,GAT with
Residual Connections, for pressure estimation is available. Our model surpasses the performance of previous
studies on several WDNs benchmarks, showing a reduction of absolute error of ≈40% on average.

Plain Language Summary Water management practitioners have resorted to mathematical
simulation tools to reconstruct pressure, flow, and demand in order to improve their control operations.
However, pure physics‐based methods need to deal with partially observable data, high uncertainty, and
extensive manual calibration. We combine physics‐based modeling and graph neural networks, a data‐driven
approach, to address the pressure estimation problem and overcome those limitations. Our work has two main
contributions. First, a random sensor placement strategy makes our estimation model resilient to unexpected
sensor location changes. Second, a realistic evaluation protocol that considers real temporal patterns and noise
injection to mimic the uncertainties of real‐world scenarios. As a result, a new state‐of‐the‐art model,GATwith
Residual Connections, for pressure estimation is available. Our model surpasses the performance of previous
studies on several water distribution networks benchmarks, showing a reduction of absolute error of ≈40% on
average.

1. Introduction
State Estimation in water distribution networks (WDNs) is a general problem that encompasses pressure and flow
estimation, often using scarce and sparsely located sensor devices. WDNs management companies rely on such
estimations for optimizing their operations. Knowing the state of the network at any given time enables water
managers to perform real‐time monitoring and control operations. The research community and practitioners
working in this field have resorted for many years to the power of mathematical simulation tools to reconstruct an
estimate of the system hydraulics (Arsene & Gabrys, 2014; Kang & Lansey, 2009; Koşucu et al., 2022; Menapace
et al., 2018; Ruiz et al., 2022; Todini et al., 2021). However, pure physics‐based simulation approaches have to
overcome the challenges of (a) data scarcity which translates to partially observable systems, (b) high uncertainty
introduced by the large number of parameters to configure, unexpected changes in consumers' behavior reflected
in uncertain demand patterns, and noisy sensor measurements, and (c) extensive manual configuration for model
calibration using metered data, which requires expert knowledge and usually hinders model re‐usability in a
different WDN (Ostfeld et al., 2012; Wang et al., 2021). The challenges associated with physics‐based modeling
of WDNs have motivated researchers to investigate the usage of data‐driven approaches, or a combination of
both, to address the state estimation problem (Lima et al., 2018; Meirelles et al., 2017).

Graph neural networks (GNNs) is a data‐driven approach that has shown successful results in several estimation
problems where data can be modeled as a graph. Since WDNs can be naturally modeled as a graph, GNNs can
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exploit the relational inductive biases imposed by the graph topology. As a result, GNNs have also attracted the
attention of researchers in the field of WDNs. For example, Tsiami and Makropoulos (2021) used temporal graph
Convolutional Neural Networks (CNNs), a combination of CNNs and GNNs, to extract temporal and spatial
features simultaneously in a model to detect cyber‐physical attacks in WDNs. Zanfei, Menapace, et al. (2022)
used GNNs for implementing burst detection algorithms. GNNs are also used for integrated water network
partitioning and dynamic district metered areas (Fu et al., 2022). In the context of Digital Twins of WDNs, a
GNN‐based model is used for Pump Speed‐Based State Estimation (Bonilla et al., 2022). Water demand fore-
casting has been also addressed using GNNs (Zanfei, Brentan, et al., 2022). Metamodeling is another interesting
area where GNNs have been leveraged for the estimation of pressures and flows (Kerimov et al., 2023; Lima
et al., 2018; Zanfei et al., 2023). GNN‐based models has been also used to solve problems related to water quality.
For example, Z. Li et al. (2024a) propose GNNs for identifying contamination sources in water distribution
systems, and for water quality prediction (Z. Li et al., 2024b). Other recent works on GNNs for pressure esti-
mation are (Ashraf et al., 2023; Hajgató et al., 2021a, 2021b). The main differences of those approaches with ours
are the training strategy and the evaluation protocol to assess the model performance. Our proposed techniques in
this regard are more realistic and give the model the ability to adapt to unexpected changes.

In this work, we focus on pressure estimation by leveraging both physics‐based simulation models and GNN‐
based data‐driven approaches. We rely on a data generation method that leverages the EPANET simulation
tool to overcome the lack of data required for model training. However, in our approach we include all dynamic
parameters (e.g., reservoir total heads, tank levels, roughness coefficient) which were not considered in previous
works. This contributes to data variety and avoids that uncertainties propagate due to model simplification errors
(Du et al., 2018). Our main contributions are twofold. First, our GNN‐based estimation model is robust to un-
expected sensor's location changes due to the proposed training strategy that relies on random sensor placement.
Second, our evaluation protocol considers real time‐dependent patterns and additionally injects the uncertainties
intrinsic to real‐world scenarios. The outcome is a new state‐of‐the‐art GNN‐based model, GAT with Residual
Connections (GATRes), for pressure estimation in WDNs.

GATRes is able to reconstruct the junction pressures of Oosterbeek, a large‐scale WDN in the Netherlands, with
an average 1.94 m absolute error, which represents an 8.57% improvement with respect to other models. Simi-
larly, our model outperformed previous approaches on other WDNs benchmark data sets. The highest
improvement was seen for C‐Town WDN (Ostfeld et al., 2012) with an absolute error decrease of 52.36%, for
Richmond (Van Zyl, 2001) an error decrease of 5.31%, and 40.35% error decrease for L‐Town (Vrachimis
et al., 2022). In addition, our first attempt on model generalization shows that a multi‐graph pre‐training followed
by fine‐tuning helps to increase the model performance. The absolute error on Oosterbeek network was reduced
by ≈2% following our generalization strategy.

The remainder of this document is as follows. Section 2 presents the problem statement, describes the issues that
need to be addressed by pressure reconstruction models and defines the criteria to assess the model capabilities.
Section 3 depicts the related work in the field, narrowed to GNNs for node‐level regression tasks and how
previous work on GNN‐based pressure estimation satisfies the criteria defined in the Section 2. The methodology
is presented in Section 4, including the data generation process, a detailed description of our model architecture,
and the details of the proposed approach for model training and evaluation. Section 5 describes the setup of the
experimental phase. It includes a description of WDNs benchmark data sets used in this work, the base model
configurations, and the evaluation metrics. Section 6 describes all the empirical evaluations of our approach. First,
the experiments on the main use case of this study, OosterbeekWDN, are depicted. Then, the experiments toward
model generalization are shown. Next, the performance of the proposed model on different benchmark WDNs is
presented. This section concludes with an ablation study to identify the contribution of the different components
of the model architecture. A discussion of the most salient findings are presented in Section 7. Finally, the
conclusions are presented in Section 8.

2. Pressure Estimation in Water Distribution Networks
2.1. Problem Statement

Hydraulic experts have managedWDNs using essential measurements such as flow, demand, and pressure. These
measurements offer a comprehensive perspective of a WDN, forming a foundation for various supervisory tasks
like forecasting (Iwakin & Moazeni, 2024), leak detection (Garðarsson et al., 2022), and operational control
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(Nerantzis et al., 2020). For this reason, this study focuses on addressing the fundamental challenge of
approximating measurements across all nodal locations within water networks. In this investigation, we initially
assume that the prior knowledge (i.e., historical data) is unavailable and network states are discretely recorded
under typical conditions, disregarding unforeseen events like leaks, earthquakes, or fires. Additionally, we
presume that measured states between two neighborhoods within the network exhibit a degree of similarity. These
assumptions are crucial for employing a data‐driven machine learning model trained from valid cases while
avoiding corruption in the complexities of water networks.

A real‐life WDN consists of diverse components such as tanks, valves, pumps, reservoirs, and thousands of
customer junctions whose measurement states are crucial for management. In this study, we narrow the scope and
favor pressure as the primary measurement due to the ease of meter installation and the more affordable price
compared to flow ones (Zhou et al., 2019). Nevertheless, these pressure sensors are limited in practice due to
infrastructural limits and privacy concerns. Consequently, the gathered data, known as the pressure states of the
junction nodes, are scarce. These states play crucial roles as samples in training data‐driven approaches aligned
with a machine‐learning model that often requires a large amount of data. As a prerequisite, pressure states should
be fully observable to minimize the estimation loss of the trained model in all customer positions throughout the
water network. This contradiction poses a challenge in applying the machine‐learning approach to solve pressure
estimation tasks.

The application context is about what and when the trained model should be applied. Generally, a model is often
associated with a unique water network and fixed sensors previously seen during training. Also, the training
environment may exclude noisy, uncertain conditions that could affect the model's decision‐making. In other
words, these challenges result in worse model performance when faced with unfamiliar network topologies or
uncertain situations. Consequently, model retraining is inevitable, albeit such training is an expensive and un-
sustainable approach. This concern enhances the necessity of the generalization ability of pressure estimation
models, which needs to be addressed in prior research. Before addressing this research gap, we will first delve into
the specific problem within water networks and lay out the criteria necessary for a robust pressure estimation
model.

2.2. Partially‐Observable Data and Realistic Model Evaluation

Water distribution networks domain is characterized by partial‐observability due to the limited sensor coverage.
This imposes an additional challenge because the reconstruction models need to be trained on fully‐observable
network operation snapshots. The common approach to overcome this limitation is to rely on mathematical
hydraulic simulation tools, for example, EPANET (Rossman, 1999), to generate full‐views of the network
operation and use them for model training (Ashraf et al., 2023; Hajgató et al., 2021a, 2021b; Xing & Sela, 2022;
Zhou et al., 2023).

Although the hydraulic simulations solve the lack of training data for the reconstruction models, the remaining
challenge is how to create a valid and reliable evaluation protocol and the data used for it. Sampling from the data
generated from the simulation models and splitting them into training and test sets is not enough. Ideally, the
assumption behind machine learning models is that the training data is ruled by the exact same distribution of the
data on which the model will be evaluated. However, having absolute control over the data generation process and
meeting such a perfect match between both distributions is unrealistic and the assumption is violated under real‐
world conditions (Bickel et al., 2007; Fang et al., 2022; Hendrycks & Gimpel, 2017). Thus, the prediction models
should be robust to distribution shifts between training and testing samples, that is, be able to generalize to out‐of‐
distribution (OOD) data (Farquhar & Gal, 2022).

We observed that the data distribution of pressures in the training and test sets created by the simulation models
are identical, which is unnatural in practice. The density distributions of pressures in the training and test sets from
different WDNs, generated by the Hydraulic Simulation tool EPANET, are shown in Figure 1. In this case, the
simulation's dynamic parameters, for example, reservoir total heads, junction demands, pump speed, were
randomly adjusted for every run. As we described before, we consider only WDN states under normal conditions.
Thus, all static parameters, for example, node elevation, pipe length, pipe diameter, etc. are fixed. Each simulation
run produces an arbitrary state of the network (snapshot) given a particular combination of input parameter's
values. The algorithm ran until 50,000 stable network states were reached. Then, the data were randomly par-
titioned into training, validation, and test set in a 60:20:20 ratio, respectively. The plots were generated taking
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2,000 snapshots at random from the training and test sets, where each snapshot represent the pressures at all
junctions. Nonetheless, as evident from the image, the distributions of the training and test sets created by the
hydraulic simulations are identical in all examples. In this case, evaluating the reconstruction models on data
generated by the same algorithm is simply evaluating the ability of the model to reconstruct the signals already
seen during the training process.

In our work we propose a realistic test set generation process that relies on time‐based demand patterns. In
addition, Gaussian noise is injected before the simulation to mimic the uncertainty intrinsic to real‐world sce-
narios. Combining time‐based demand patterns and noise injection allows to create realistic scenarios to evaluate
the ability of the models to generalize to OOD data, with visible differences in density distribution between
training and test sets.

2.3. Criteria for Model Assessment

The out‐of‐distribution problem may originate from the uncertainty of measured sensors, the fluctuation in hy-
draulic parameters, and the diversity of water network topologies. Within the context of these factors, we delve
into the limitations of physical models. First, the uncertainty from sensors is due to the gradual sensor coverage
plan, maintenance period, and sensor malfunction. This uncertainty impacts the performance of physical models
and often requires a human‐involved recalibration process. Similarly, unforeseen fluctuations in hydraulic pa-
rameters can be triggered by changes in socioeconomic conditions, aging infrastructure, or unexpected events like
pandemics. While existing techniques on top of the physical model, such as calibration and skeletonization, can
mitigate these issues, they often require further human intervention. Additionally, encountering unseen water
networks with different topologies inevitably leads to a redesign process that costs time and resources signifi-
cantly. Furthermore, the physical model can only perform a proper simulation if all hydraulic parameters of all
components in the new network are fully identified, posing a practical challenge and emphasizing the persistence
of a generalization problem.

Some previous studies have proposed utilizing more efficient data‐driven machine‐learning models (discussed in
Section 3) to tackle the challenges above. However, it is critical to note that these works have often overlooked
some of these problems. This oversight essentially motivates us to have a list of criteria that indicate the favorable
capabilities of a data‐driven model addressing the pressure estimation task onWDNs.We then propose the criteria
of generalizability, adaptability, and robustness as follows.

(C1) Generalizability: The model is able to perform the pressure estimation task across diverse WDNs,
regardless of their topology, even when encountering networks not seen during training. This is an important
aspect of generalizability, making it more useful in practice.
(C2) Adaptability: The model should efficiently maintain its estimation capabilities in diverse contextual
circumstances, typically involving the positional variation of sensor measurements. Sensor‐related events
like periodic maintenance, gradual coverage plans, and malfunctions can affect changes in sensor locations
within the network, leading to exhaustive retraining for conventional machine‐learning models in severe

Figure 1. Density distribution of training and test sets in C‐Town, Richmond, L‐Town, and Oosterbeek water distribution networks, generated by the hydraulic
simulation tool EPANET.
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cases. Therefore, the criterion favoring model flexibility is essential to uphold the model performance during
the network's life cycle.
(C3)Robustness: This criterion considers the model's robustness against inherent distortion in the wild. The
reasons involve noise in observations, data transmission, and parameter discrepancy between simulated and
actual environments. Notably, this uncertainty has been overlooked in existing approaches, as testing data
was often evaluated in a noise‐free, laboratory environment.

In the following section, the provided list is crucial in assessing the state‐of‐the‐art methods for the pressure
estimation task. Accordingly, we outline their accomplishments and limitations before presenting our solution
that purposely fulfills all specified criteria.

3. Related Work
3.1. GNNs for Node‐Level Regression Task

Most of the GNNs have originated from a feed‐forward neural network involving multiple hidden layers of
interconnected neurons. Each layer performs a transformation of the input data and then passes it through a series
of mathematical operations. In terms of GNNs, the favored input data is the graph. As it can naturally represent an
abstract level of a WDN, we purposely investigated existing GNN approaches for solving our core problem
known as node‐level regression.

Wu et al. (2021) categorized GNN based on their purposes into graph‐level, link‐level, and node‐level tasks.
These categories indicate the versatility and primary focus of GNN to provide outcomes across various domains.
For instance, graph‐level and link‐level have been employed in domains such as chemistry (Reiser et al., 2022),
bioinformatics (Nguyen et al., 2020), and recommendation systems (Z. Chen et al., 2020). On the other hand, the
node classification task has risen the prominence in the node‐level category, demonstrating its dominance in
practical fields such as physics (Shlomi et al., 2020) and finance (B. Xu et al., 2021).

As an influence of prevalent node classification, well‐known GNN architectures have been developed to excel for
this specific task (M. Chen et al., 2020; Defferrard et al., 2016; Veličković et al., 2018). This leads to the lack of
attention to node regression tasks and causes ambiguity regarding the effectiveness of these popular GNNs in
handling continuous values within the node‐level regime.While early research has explored node‐level regression
in narrow domains (Derrow‐Pinion et al., 2021; Ying et al., 2018), comprehensive comparisons across these
popular architectures, especially within the water sector, are lacking. Addressing this issue, we delve into
exploring the capability of popular GNNs in tackling a fundamental challenge in node regression: state
estimation.

3.2. State Estimation With GNNs

Early research integrated GNN (GNNs) into calibration processes (Zanfei et al., 2023). Along with the devel-
opment, recent advancements have introduced calibration‐free GNNs, showcasing notably superior performance
compared to classical models in state estimation tasks (Hajgató et al., 2021a, 2021b). State estimation is a process
of inferring the current state of a WDN. For example, it involves predicting the water pressure or flow rate at
different nodes based on sensor measurements within the network. Its application is crucial for subsequent
management tasks, including leak localization (Mücke et al., 2023), optimal control (Martínez et al., 2007), and
cyber‐attack detection (Taormina et al., 2018).

It is worth distinguishing state estimation from a related concept known as surrogate modeling, as both ap-
proaches may produce similar outputs, such as pressure, flow rate, and velocity (Kerimov et al., 2023). The key
distinction lies in their objectives and input features. Surrogate models strive to replicate the behavior of a
physical simulation model across diverse input parameters—such as customer demand, nodal elevation, and
pump head patterns. Conversely, state estimation focuses on reconstructing signals at unmeasured nodes based on
existing ones and the network's topology. In other words, state estimation models have fewer requirements to
provide outcomes, leading to beneficial convenience in the practical application. Expanding from this point, we
supply a comprehensive list of representative works and assess them against the predefined criteria outlined in
Section 2.3.
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Hajgató et al. (2021a, 2021b) is the first work that proposes to train a GNNmodel on a well‐defined synthetic data
set. (C2)Adaptability is satisfied because the authors trained the model on various snapshots concerning different
sensor locations. On the other hand, achieving (C3)Robustness is vague as all reports were based on time‐
irrelevant and synthetic data. Also, the model cannot deal with the generalization problem due to the limita-
tion of spectral‐based GNNs in which the learned features extracted from Fourier space are closely associated
with the corresponding network, yielding the lack of reusability (S. Zhang et al., 2019). For this reason, it fails to
satisfy (C1)Generalizability.

Ashraf et al. (2023) improved the above work on historical data. In this case, working with a spatial‐based GNN
can help extract features from any encountering topology, so it is possible to satisfy (C1)Generalizability. In
addition, testing on noisy time‐relevant data could be seen as an uncertainty consideration. However, this work
heavily depends on historical data generated from a pure mathematical simulation engaging with “unchanged”
dynamic parameters (e.g., customer demand patterns). In practice, this approach does not apply to the cases where
those parameters are prone to error or unknown (Kumar et al., 2008). Hence, we consider that it weakly satisfies
(C3)Robustness. However, the authors fixed sensor positions during training, which could negatively affect the
model observability to other regions in the WDN. For this reason, stacking very deep layers that increase model
complexity is inevitable to ensure the information propagation from far‐away neighbors to fixed sensors (Barceló
et al., 2020). Additionally, retraining the model is mandatory whenever a new measurement is introduced, which
has detrimental effects on its flexibility and scalability. Thus, the model violates (C2)Adaptability.

Note that we exclude the heuristic‐based methods as they do not consider the topology in decision‐making. Also,
several graph‐related approaches (Kumar et al., 2008; Xing & Sela, 2022) have existed in this field. However,
they accessed historical data, and neither attempted to solve the task in a generalized manner. Alternatively, we
assume that prior knowledge (i.e., historical data) is unavailable. In this work, we delve into the capability of
GNNs in a general case, in which the trained model can be applied to any WDN and any typical scenario.

4. Methodology
4.1. Water Network as Graph

AWDN is a complex infrastructure that provides safe and reliable access to clean water for individual usage. We
define an immediate state of measurements recorded in a water network as a snaphot at a particular timestamp. A
sequence of snapshots yields a scenario expressing a form of temporal correlation across snaphots. Due to initial
assumptions, this temporal information is unavailable, leading us to consider a sampled snapshot as a repre-
sentation of the entire scene for a particular network.

Mathematically, a snapshot is represented as a finite, homogeneous, and undirected graphG = (X, E, A) that has
N nodes and M edges. Edges represent pipes, valves, and pumps, while nodes can be junctions, reservoirs, and
tanks. The nodal features are stored in the matrix X∈RN×dnode , where dnode is the nodal feature dimension. In this
work, pressure is the unique node feature because it is recognized as the most vital stable factor in monitoring the
WDN (Christodoulou et al., 2018) and aligns with prior research (Ashraf et al., 2023; Hajgató et al., 2021a,
2021b). Accordingly, we refer X to a pressure matrix, and the feature dimension dnode is fixed to 1.

E∈RM×dedge is an edge feature matrix, in which dedge is the edge dimension. Depending on a particular model, we
set dedge to 0 if none of these edge attributes is used or 2, which indicates pipe lengths and diameters are supported.
The node connection is represented in an adjacency matrix A∈RN×N , where aij = 1 means node i and j are
connected by a link, and aij = 0 for otherwise.

Observing accurate pressure X for an entire water network is challenging due to partial observability. Hence, we
rely on a physics‐based simulation model to construct synthetic pressure as training samples for the model.
Concretely, the simulation encompasses a variety of parameters, both static and dynamic. Static parameters, such
as nodal elevation and pipe diameter, remain constant, while dynamic parameters, such as junction demands and
tank settings, fluctuate over time. Then, it solves a hydraulic equation to estimate the pressure and flow at un-
known nodes in a WDN (Simpson & Elhay, 2011). For more details on solving hydraulic optimization, we refer
the reader to the EPANET engine, which serves as our default mathematical simulation (Rossman, 1999).

Despite the usability of conventional simulations, they demand a manual calibration process to stay synchronized
with the actual physical water network. Also, they suffer from the OOD problem mentioned in Section 2. In light
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of these limitations, we adopt a strategic alternative. In particular, we merely leverage a simulation model to
generate synthetic samples for training our calibration‐free model. The trained model can infer the pressure of any
water network in the deployment.

4.2. Data Set Creation

Throughout this paper, GNNs take WDN snapshots as inputs. In particular, each snapshot provides a global view
of a WDN graph representing pressure values at an arbitrary time. Additionally, it contains topological infor-
mation (e.g., node connectivity, and edge attributes) from a corresponding water network. We denote as a clean
snapshot the one that describes an instantaneous pressure state without any hidden information. In contrast, a
masked snapshot portrays a partially observable network in which the target feature known as pressure is mostly
undetermined except for a small number of metered areas.

The conventional generation requires temporal patterns to create a set of clean snapshots. A pattern records a time
series of a specific simulation parameter, such as customer demand or pump curve, in a fixed period. In other
words, such a series is often recorded in ordinary scenarios. However, it is not guaranteed that these patterns
include all events, and real‐world data is highly volatile. For example, a model trained on data created from past
patterns can fail to estimate the pressure of a WDN during the long‐term COVID‐19 pandemic due to the un-
expected sudden change in water consumption that was never found in such patterns (Campos et al., 2021;
Tiedmann et al., 2022). Furthermore, the number of available patterns is seldom provided or partially accessible
due to privacy‐related concerns, especially in public benchmark WDNs. For this reason, they are often repeti-
tively overused in modeling large‐scale water networks where the number of nodes is exponential compared to the
required patterns. This significantly impacts data set diversity and, therefore, limits the model capability to satisfy
criteria (C3) Robustness.

We then scrutinize existing generation approaches that consider the characteristics of hydraulic parameter
volatility and variability in Table 1. The underlying simulation (i.e., EPANET, Rossman, 1999) still plays a
crucial role in creating clean snapshots given an arbitrary set of parameters. Still, each approach has a specific
selection and adjustment of dynamic parameters with respect to a design space. It is worth noting that we
recognize the presence of other methods that intentionally distort topology or create unforeseen scenarios (such as
leakage, earthquakes, etc.) (Menapace et al., 2020). However, such approaches contradict our initial assumptions,
leading to their dismissal.

The conventional simulation method, EPANET (Rossman, 1999), operates time‐dependently and relies primarily
on fixed patterns. Excessive use of these patterns results in temporal correlations among snapshots, primarily due
to their inherent seasonal factors. This issue becomes inevitable, especially in large‐scale networks, where
numerous unmeasurable nodes require pattern assignments to complete a simulation process. Consequently, this
leads to information leakage between snapshots within the same scenario (see after‐splitting data distribution in
training and testing sets in Figure 1).

Alternatively (Hajgató et al., 2020), eliminate time patterns and consider a single snapshot as an instantaneous
scenario. This way is more delicate to provide more observations for data‐hungry models. However (Hajgató
et al., 2020), focus only on pump optimization, so half of the listed parameters remain untouched.

Table 1
The Selection of Dynamic Parameters Between Conventional Simulations and Sampling‐Based Generations

Data set creation Reservoir total heads Junction demand Pump speed Pump status Tank levels Valve settings Valve status Pipe roughness

Rossman (1999) ✓ ✓ ✓a

Hajgató et al. (2020) ✓ ✓ ✓ ✓

Our ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note. Parameters marked with a check can exhibit varying values, whereas others remain constant throughout the generation process. Note that the dynamic parameter
selection also depends on component availability in a particular network and data set creation stability to prevent abnormal results. aPump speed is implicitly adjusted by
a pump curve pattern.
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Both available generations assume the remaining parameters are deterministic and unchanged. Nevertheless,
these parameters (e.g., pipe roughness) can be critical factors affecting the simulation result (Zanfei et al., 2023).
Thus, neglecting any of these parameters can restrict the model in learning representations of WDN snapshots.

Intuitively, we consider a comprehensive modification of all dynamic parameters as a data augmentation to ensure
the simulation quality and address the generalization problem. Our main objective is to design a sufficient search
space to provide different pressure views from flexible sensor positions. This approach helps alleviate the data‐
hungry issue when training deep learning models and benefits model robustness thanks to the augmented data
space (Cubuk et al., 2020).

In particular, we adopt a brute‐force approach to explore the full range of available dynamic parameters. To
ensure the simulation quality, we exclude parameter sets that generate pressure ranges surpassing practical limits,
within the range of [0 m, 151 m] (Paez & Filion, 2017). Subsequently, our generation takes these sets of dynamic
parameters, an unchanged static set, and the topology of a particular water network to generate a single snapshot
using the conventional simulation (refer to Figure 2). Note that it only performs a single simulation step that
removes the essence of temporal patterns. This process outcome is a set of distinct immediate pressure states,
which are more versatile and independent in time. In contrast to the classical usage, this approach eliminates the
temporal correlation concern and leverages all dynamic parameters to generate training samples designed to cover
the entire input space.

4.3. Model Architecture

The model is expected to learn a graph representation from existing known signals to estimate unknown pres-
sures. In addition, for accurately estimating the pressure at a distant location from sensors, it is crucial to have an
approach to gather the (inferred) measurements from the metered nodes and intermediate nodes to the distant
neighbor efficiently. We first recap Message Passing Neural Networks (MPNN) (Gilmer et al., 2017), the generic
framework for spatial GNNs. Then, we discuss Graph Attention Network (GAT) (Veličković et al., 2018) as one
of our fundamental components. In light of this, we propose GATRes as a principal block and devise the overall
architecture illustrated in Figure 3.

Figure 2. Our data generation approach. Dynamic parameters are sampled from a uniform distribution and passed to the
mathematical simulation with static values and water distribution network topology. The result is a synthetic data set
containing legit snapshots whose pressure range should be close to reality.
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4.3.1. Preliminaries

Considering a GNN as a series of stacked layers, MPNN describes a specific layer to transform previous rep-
resentations to successive ones using message propagation. We omit the layer index for simplicity and denote
representations of a target node i as xi. Noticeably, the first representations are input features known as pressure
values. Then, the output representations of a consecutive layer are computed as follows:

zi = UPDATE(xi, ⊕
j∈N(i)

MSG(xj)) (1)

where zi is the corresponding output of the target node i, N(i) denotes the 1‐hop neighbors, MSG and UPDATE
are differential functions describing messages received from neighbors and the way to update that information
concerning its previous representations respectively. ⊕ is a differentiable, permutation‐invariant function,
ensuring the gradient flow backward for model optimization and addressing concerns related to node ordering
(Gilmer et al., 2017). This function plays a critical role in aggregating neighbor messages into the target one.

Depending on the task‐specific purpose, numerous ways exist to define the message aggregator, such as mean,
max, sum (K. Xu et al., 2019), or Multilayer Perceptron (Zeng et al., 2020). Ideally, ⊕ is designed to propagate
messages from surrounding nodes in a sparse fashion, which only matters to non‐zero values. Thus, this scheme
efficiently scales when dealing with enormous graphs and economically saves the memory allocation budget.

Next, we explain GAT in view of a target node i. Concretely, GAT focuses on the intermediate representation
relationship between the target node i and one of its 1‐hop neighbors j. If a node pairs with itself, it forms a self‐
attention relationship. Hence, we strategically establish a virtual self‐loop link in every node to put weights
between itself representations compared to the aggregated ones from the neighborhood. Mathematically, we can
rewrite the GAT formula according to Equation 1 as:

zi =
⃦
⃦
H

h
∑

j∈N(i)∪{i}
αhijΘxj = GAT(xi) (2)

where H is the number of attention heads, ‖ is a concatenation operator, Θ∈Rdin×dout is the layer weight matrix
with din and dout that are the input and output representation dimensions, respectively. Specifically, a summation
is chosen as the UPDATE function to aggregate nodal messages. For each node, its MSG function is represented
by multiplying αwith the linear combination of learnable weightsΘ and nodal input xj. In addition, α is referred to
as the attention coefficient and is computed as:

Figure 3. GATRes architecture. The left image indicates the overall architecture consists of two linear layers interleaving
with GATRes blocks. The middle figure illustrates the abstract view in each block. The right‐side ones explain the message
aggregation mechanism between neighbor nodes.
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αij = softmax(σ(aT [Θxi||Θxj])) (3)

where softmax(x) = exi
∑j∈N(i)∪{i}

exj
is used to compute the important score between the target node i and a neighbor j.

Before calculating softmax, the concatenation of both nodal representations is then parameterized by learnable
weights a∈R2dout and passed through a non‐linear activation function σ(.) (e.g., ReLU,GELU, or LeakyRELU, B.
Xu et al., 2015).

Inspired from Vaswani et al. (2017), GAT leverages multiple attention heads to perform parallel computation and
produce diverse linear views. In the original work, those head views should be joined to “merge” all‐in‐one
representations, thanks to a linear layer mapping the concatenated heads. However, the conventional approach
(Veličković et al., 2018) is to stack numerous concatenated GAT layers sequentially (hence, without any head
joint) except for the last layer, where a final mean view is computed but only for the final logit in a classification
task. The postponed head joining could preserve irrelevant views in the consecutive layer that double the
detrimental effects of the nodal feature sparsity due to the high masking rate in an unsupervised setting. In other
words, irrelevant head views quickly saturate the impact of final nodal presentations and accelerate the smoothing
process (i.e., oversmoothing, D. Chen et al., 2020). Extra propagation layers are helpless because they worsen the
situation. Thus, we hypothesize that merging head views could complete the original design and suppress un-
related information. Intuitively, it raises a question of whether to linearly transform the concatenation head view
as in Vaswani et al. (2017) or merely take an average of head representations.

4.3.2. GATRes

Alternatively, we empirically propose using an additional GAT layer to evaluate head views generated from the
previous one. We name this approach as GATRes. Mathematically, we define our GATRes as follows:

zi = xi +
1

|N(i) + 1|
∑

j∈N(i)∪{i}
GAT(GAT(xj;α,Θ);β,Ψ) (4)

where, attention coefficients α∈RN×H computed in Equation 3 and learnable weight matrixΘ∈Rdin×Hdout belong
to the first GAT. Identically, β∈RN and Ψ∈RHdout×dout are from the second GAT but different in shape.

As in the middle image in Figure 3, we feed the intermediate input xi to two GAT layers sequentially. For a target
node i, the innerGAT : RN×din → RN×Hdout devises multi‐head views and weighs them among its 1‐hop neighbors.
In other words, it additionally enriches the diversity of multi‐head views using the message aggregation from
surrounding nodes.

Then, the outer GAT : RN×Hdout → RN×dout creates a bottleneck in the feature dimension and, again, reweights the
target representation considering the ones of its neighbors. Note that the second GAT has exactly one head to
transform all previous heads into a consistent view. We call this process a squeezing technique. Since most initial
features are noise or zeros, squeezing can reduce the sparsity duplication in feature space caused by head
concatenation and, therefore, benefits second attention among nodal pairs. Moreover, we consider the distribution
of pressure values in the neighborhood, so we empirically apply a mean aggregator to the current representations
(K. Xu et al., 2019). Afterward, we use a non‐parametric residual connection with the intermediate input xi that
allows depth extension and diminishes the overfitting problem (He et al., 2016).

As in Figure 3, the overall structure is a stack of numerous GATRes blocks. As each block considers 1‐hop
neighborhoods, stacking multi‐blocks allows message propagation to faraway neighbors in the graph. Before
message propagation layers, we employ a shared‐weight linear transformation to project the masked input nodal
features to higher‐dimensional space. The details of masked inputs will be explained in the following subsection.
We refer to the first linear layer as the steaming layer, which is well‐known in computer vision tasks (Dosovitskiy
et al., 2021; Tan & Le, 2019). After message propagation, the final linear layer acts as a decoder to project higher‐
dimensional representations back to the original dimension (i.e., dnode = 1). The end‐to‐end model will then
output an immediate snapshot in which all pressure values at any junctions are recovered.
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4.4. Model Training

This section introduces our solution for addressing the pressure estimation task. We begin by outlining a general
training scheme applicable to any GNN model. Figure 4 depicts this scheme, leveraging synthetic data sets from
the previous stage for training. Following this, we detail an approach to evaluate the trained model using time‐
relevant data.

4.4.1. Training Details

To begin with, we sample a binary mask vectorm= {m1,m2, …,mN} where eachmi ∈ {0, 1}. We then construct a
feature subset of the masked node X̃⊂X in which its element x̃i is denoted as:

x̃i = {
0 mi = 1

xi mi = 0
(5)

There exist various masking strategies, such as learnable (MASK) tokens, feature permutation, arbitrary vector
substitution, and mixup nodal features, which could be helpful for future work (H. Zhang et al., 2018). In this
work, we opt for a simple masking approach: replacing the node features with zeros in the masked positions to
create the masked X̃ (Equation 5). We then formalize the pressure estimation as follows:

X′ = fGNN ( X̃, E, A; Θ) (6)

where fGNN : RN×dnode × RN×N × RM×dedge ↦RN×dnode is a generic GNN function that takes partial‐observable
feature matrix X̃, the topology A, and edge attributes E as inputs and yields reconstructed features X′ charac-
terized by model weights Θ. The key idea is to find the optimal weights that satisfy the minimum error between
predicted and ground truth nodal features. Mathematically, the objective is formalized as follows:

Θ∗ = argmin
Θ

L(X′,X) (7)

Figure 4. Graph neural network (GNN) training scheme. Given clean snapshots, we mask out a significant number (95%)
of node features. The remaining data is then sent into a GNN playing as an autoencoder to rebuild missing values with regard
to graph properties (such as topology and edge attributes). GNN weights are updated using the loss derived by the predicted
and ground truth values at masked places.
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Empirically, we use the mean square error (MSE) as a default loss function L for GATRes because it yields the
best result in our tests. In addition, inspired by BERT (Devlin et al., 2018), the loss is computed on masked
positions. After computation, model weightsΘ are updated by the partial derivatives w.r.t the computed loss. For
detail, we refer to gradient descent optimization techniques (Kingma & Ba, 2014; Ruder, 2016). The training
progress is then iterated with different masked features X̃ derived from the original features X until the model
convergence.

4.4.2. Testing Details

In testing, the test graphs can be represented asGtest = ( X̃test,Etest,Atest) . By default, topology and edge attributes
are retained as in training while X̃test is varied and its data distribution is undetermined. For the generalization
problem, Gtest can differ from the training graphs in any property. In other words, the model should be able to
estimate pressure on an unseen topology and an unknown data distribution.

When the temporal dimension is involved, the test graph at a particular time t is denoted asGt
test. As the designed

model takes only one snapshot as input, we feed temporal Gt
test into the trained GNN model sequentially and

individually. In other words, previously inferred outcomes do not impact any reconstruction result within a testing
scenario. These scenarios are considered real‐world situations associated with inherent uncertainty due to dy-
namic factors (Zhou et al., 2023). To reflect this uncertainty in our testing, we adopt a distortion method on
junction demands during the testing phase, drawing inspiration from (Mücke et al., 2023; Zhou et al., 2023).
Specifically, we outline two strategies as follows:

Clean test. We consider an assumption of no uncertainty, ensuring that baseline models observe clear,
precisely calibrated pressure. As these models treat each snapshot as an independent sample, we gauge
the model adaptability across different sensor configurations using a distinct mask for each snapshot in
every trial. The statistical outcomes from 100 trials, encompassing diverse metered locations, illustrate
the model performance under typical conditions.

Noisy test. Following (Zhou et al., 2023), we inject Gaussian noise into junction demands before processing
the simulation and then pair each outcome snapshot with a random mask for a test case. Pipe roughness,
another considered parameter, is intentionally excluded due to its inconsistency across different headloss
formulas used for each water network. Notably, the Hazen‐Williams and Darcy‐Weisbach formulas are
sensitive to pipe roughness, whereas the Chezy‐Manning formula remains unaffected by this parameter
(Klise et al., 2018). In the interest of generalization, we have opted to exclude this parameter. Never-
theless, we set a tougher noise for junction demands beyond the original tests. The new noisy test involves
the mean and standard deviation of 10% and 100% of the initial demands, respectively. We run 100 test
cases and report statistical findings.

5. Experiment Settings
5.1. Data Sets

The main use case in this study was performed using a private large‐scale WDN in The Netherlands in the area of
Oosterbeek. The network comprises 5,855 junctions and 6,188 pipes. Figure 5a shows the topology and the
pressures at the nodes from some random snapshot of Oosterbeek WDN.

We also used four publicly available WDNs benchmarks, namely Anytown (Walski et al., 1987), C‐Town
(Ostfeld et al., 2012), L‐Town (Vrachimis et al., 2022), and Richmond (Van Zyl, 2001) to provide a baseline
for evaluation and reproducibility of our work. Finally, in the experiments related to model generalization, we
used two additional public data sets, Ky13 (Hernadez et al., 2016) and an anonymized WDN called “Large”
(Sitzenfrei et al., 2023). The WDNs used in this study vary in size and structure, ranging from small and medium
size to large‐scale networks like “Large” and Oosterbeek, as can be seen in Figure 5. Table 2 shows the main
characteristics of each network.

5.2. Baseline Models Settings

Generally, two goals dictate the baseline selection. Section 3 mentions the first goal: to try out popular GNN
architectures on a node‐level regression problem. The aim is to achieve acceptable errors when the models are
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tested on data points that are from an unknown “nature” distribution. The second goal is to explore existing
frameworks, from synthesized data querying and model training to evaluation phases. We aim to establish a
reliable benchmarking framework for pressure estimation tasks or problems related to WDNs. In other words, the
model that performs better in our tests should be more useful in practical applications.

For this purpose, we compare our GATRes architecture to popular GNNs, including GCNii (M. Chen et al., 2020)
and GAT (Veličković et al., 2018). In addition to this, GraphConWat (GCW) (Hajgató et al., 2021a, 2021b) and
mGCN (Ashraf et al., 2023), which are dominant approaches in solving pressure estimation using GNN with
sparse information, are also considered in our comparison. Table 3 summarizes the model settings.

GATRes‐smallwith hyperparameters is the optimal version after the optimization process, which will be carefully
explained in the latter section. To study the impact of the model size, we also introduce GATRes‐large scaling
close to mGCN in terms of the number of parameters.

GAT remained at a shallow depth to prevent the oversmoothing problem (D. Chen et al., 2020). Precisely,
neighbor features encoded by a too‐deep GNN converged to indistinguishable embeddings that harm the model
performance. Empirically, we balance the trade‐off between performance and efficiency for each model to select
the appropriate hyperparameters.

In GraphConvWatmodels, we detached binary masks from the input features as these masks did not improve the
model performance, which aligns with the findings in Ashraf et al. (2023). Furthermore, GraphConvWat tuned is
a lightweight version in which the degrees of the Chebyshev polynomial Ki are set to smaller values to reduce
complexity and work surprisingly well in our experiments.

Training mGCN slightly diverged from its original work in sensor positions. Concretely (Ashraf et al., 2023),
trained mGCN using fixed sensors with extensive historical data. However, as we explained in Section 4.4, this
data was inaccessible throughout training. Therefore, we fed different random masks into the model in each
epoch. Considering a synthetic data set, the model had an opportunity to capture meaningful patterns in various
sensor positions. Additionally, mGCN incorporated static edge attributes such as pipe length and diameter in its
final decision‐making process.

We then provide an overview of other hyperparameters, applicable to any mentioned model. Each model was
trained in a fixed number of iterations, so‐called epochs, throughout the entire training set. In addition, the whole

Figure 5. Water distribution networks used in this study.

Table 2
Properties of Water Distribution Networks (WDNs) Used in This Study

WDNs Oosterbeek Anytown C‐town L‐town Richmond Ky13 Large

Junctions 5,855 22 388 785 865 775 3,557

Pipes 6,188 41 429 909 949 915 4,021
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data set, including the training set, was pre‐processed by z‐score transformation (z‐norm) or min‐max feature
scaling. Within an iteration, the model was sequentially fed data batches whose size determined the number of
training examples. Both epochs and batch size were detailed in each specific experiment. Following each iter-
ation, we computed the loss, typically mean squared error (MSE) or mean absolute error (MAE), comparing
predicted outputs to ground truth. Subsequently, this loss guided the optimizer algorithm in updating the model's
weights. The optimizer's behavior was influenced by additional hyperparameters, including the learning rate,
regularization (defaulting to L2), and weight decay, which penalized model weights to mitigate overfitting. For
comprehensive definitions, we recommend referring to (Biehl, 2023).

5.3. Evaluation Metrics

The most common evaluation metrics used for assessing the performance of regression models are Root Mean
Square Error, MAE, and Mean Absolute Percentage Error (MAPE) (Derrow‐Pinion et al., 2021; Jiang &
Luo, 2022; Zhao et al., 2019). Following the insights from Legates and McCabe (1999), the models should be
evaluated using both, relative and absolute error metrics. Thus, our model is evaluated using MAE and MAPE.
Additionally, we included the Nash and Sutcliffe Coefficient of Efficiency (NSE), widely used to evaluate the
performance of hydrologic models (Legates &McCabe, 1999). Finally, we used an accuracy metric defined as the
ratio of positive predictions over the total number of predicted values. The positive predictions are those that
deviates at most a certain threshold (δthresh) from the true value. Thus, the evaluation metrics used in this work are
defined as follows:

MAE =
1
N
∑
N

i=1
|yi − ŷi| (8)

MAPE =
1
N
∑
N

i=1

|yi − ŷi|
yi

(9)

NSE = 1 −
∑N
i=1( yi − ŷi)

2

∑N
i=1( yi − y)

2 (10)

Acc(@δthresh) =
1
N
∑
N

i=1
positivei ; positive = {

1, if |yi − ŷi|≤ δthresh ∗ yi
0, otherwise

(11)

where y denotes the true values, ŷ denotes the predicted values, y is the mean of the true values, and N is the
number of values to predict.

Table 3
Baseline Settings

GCNii GAT GCW GCW tuned (ours) mGCN GATRes small (ours) GATRes large (ours)

#blocks 64 10 4 4 45 15 25

#hidden.channels 32 {32, 64} {120, 60, 30} 32 {98, 196} {32, 64} {128, 256}

Coefficient K – – {240, 120, 20,1} {24, 12, 10, 1} – – –

Edge attribute Binary Binary Binary Binary Pipe.len, pipe.diaa Binary Binary

Norm type Znorm Znorm Minmax Znorm Minmax Znorm Znorm

Loss MSE MSE MSE MSE MAE MSE MSE

Learning rate 3e− 4 3e− 4 3e− 4 3e− 4 1e− 5 5e− 4 5e− 4

Weight decay 1e− 6 1e− 6 1e− 6 1e− 6 0 1e− 6 1e− 6
aPipe lengths and pipe diameters. They are static parameters gathered from the corresponding Water Distribution Network.
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6. Experiments
6.1. Baseline Comparison on Oosterbeek WDN

In this experiment, we investigated the proposed model performance against GNN variants on a large‐scale
WDN benchmark called Oosterbeek. Specifically, given the topology and hydraulic‐related parameters, our
data set generation provided 10,000 synthetic snapshots divided into 6,000, 2,000, and 2,000 for training, vali-
dation, and testing sets, respectively. However, as we discussed in Section 2.2, these synthetic sets might
not reflect real‐world scenarios. Therefore, we merely used them to keep track of model learning during the
training process.

Alternatively, we performed the comparison on the Oosterbeek data set recorded every 5 min for 24 hr. We relied
on mathematical simulation to produce reproducible results that resembled real‐world conditions. The topology
and predefined parameters set by hydraulic experts under a calibration process made them valid for our analysis.
As a result, we considered the simulated outcomes of time‐relevant data as ground truths.

Regarding the experimental setting, we trained all models in 500 epochs with a batch size of 8 for a fair com-
parison among the baseline models. Early Stopping was applied to suppress training if the validation error had no
improvements in 100 steps. We used Adam optimizer (Kingma & Ba, 2014) and set the default masking rate at
95%, leaving only 5% of nodes unmasked.

For evaluation, we tested the baseline models on the 24‐hr Oosterbeek, repeating the process 100 times. The mean
and standard deviation of the results are presented in Table 4. Unless otherwise specified, the default is a clean test
in our experiments. The results of the noisy test are given in Table 5.

Table 4 shows that GATRes‐small achieved accurate junction pressure reconstruction with a MAPE of 7% and a
MAE of 1.93 m, even with a sparse masking ratio of 95%. Notably, the testing data were time‐sensitive and
originated from an unfamiliar distribution our models were not exposed to during training. The good results on
snapshot‐based models suggest that in case temporal data is not available, snapshot‐based models seem to be good
alternatives.

Table 4
Model Comparison in the Clean Test Performed on 24‐Hour Oosterbeek Water Distribution Network at 95% Masking Rate

Model #Milion params (↓) MAE (↓) MAPE (↓) NSE (↑) Acc(@0.1) (↑)

GCNii (M. Chen et al., 2020) 0.65 6.357 ± 0.0197 0.2147 ± 0.0008 − 0.0137 ± 0.0061 38.48 ± 0.1351

GAT (Veličković et al., 2018) 0.35 3.726 ± 0.0120 0.1287 ± 0.0008 0.3276 ± 0.0037 73.52 ± 0.0900

GraphConvWat (Hajgató et al., 2021a, 2021b) 0.92 3.067 ± 0.0077 0.1160 ± 0.0004 0.6938 ± 0.0020 69.92 ± 0.1205

GraphConvWat‐tuned 0.23 2.293 ± 0.0087 0.0821 ± 0.0005 0.7518 ± 0.0024 83.03 ± 0.1025

mGCN (Ashraf et al., 2023) 2.48 2.111 ± 0.0085 0.0806 ± 0.0003 0.7100 ± 0.0030 84.05 ± 0.0693

GATRes‐small (ours) 0.66 1.937 ± 0.0074 0.0703 ± 0.0005 0.7773 ± 0.0025 87.48 ± 0.0761

GATRes‐large (ours) 1.67 2.020 ± 0.0132 0.0711 ± 0.0003 0.7864 ± 0.0031 84.33 ± 0.1347

Table 5
Model Comparison in the Noisy Test Performed on 24‐Hour Oosterbeek Water Distribution Network at 95% Masking Rate

Model #Milion params (↓) MAE (↓) MAPE (↓) NSE (↑) Acc(@0.1) (↑)

GCNii (M. Chen et al., 2020) 0.65 6.696 ± 0.0838 0.2484 ± 0.0552 − 0.1064 ± 0.0266 36.02 ± 0.4684

GAT (Veličković et al., 2018) 0.35 4.397 ± 0.3052 0.2112 ± 0.0767 0.1490 ± 0.1153 66.98 ± 1.6290

GraphConvWat (Hajgatóet al., 2021a, 2021b) 0.92 3.611 ± 0.1234 0.1551 ± 0.0376 0.5877 ± 0.0370 62.99 ± 1.1600

GraphConvWat‐tuned 0.23 2.347 ± 0.0252 0.0963 ± 0.0363 0.749 ± 0.0086 81.09 ± 0.3877

mGCN (Ashraf et al., 2023) 2.48 2.188 ± 0.0558 0.0948 ± 0.0155 0.6993 ± 0.0213 82.83 ± 0.4199

GATRes‐small (ours) 0.66 1.964 ± 0.0301 0.0802 ± 0.0458 0.778 ± 0.0113 86.56 ± 0.2826

GATRes‐large (ours) 1.67 2.115 ± 0.0503 0.0799 ± 0.0207 0.7417 ± 0.0140 83.43 ± 0.5044
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In addition, we assessed the efficiency of baseline models in the Oosterbeek experiment using an Nvidia RTX
3060 Laptop GPU for inference only. The results are presented in Table 6.

In this evaluation, we measured throughput, which counts the number of processed snapshots in a second. This
metric can demonstrate the efficiency of baselines in terms of large‐scale matter that demands continuous pro-
cessing of massive data streams from sensors.

Notably, lightweight models such as GAT and GraphConvWat‐tuned achieved the highest throughput, with our
GATRes‐small model ranking third. When we consider both efficiency and performance in Table 6, GATRes‐
small is a balanced option as this model delivers the best result while maintaining sufficient efficiency, a crit-
ical factor in saving computation resources and ensuring the sustainability of the environment.

Our next focus was on analyzing the baseline robustness. Precisely, we assessed each baseline on clean and noisy
tests using an individual snapshot with 100 randomly initialized masks. Our primary objective was to measure the
model's robustness in these contrasting scenarios. A superior model should exhibit minimal error discrepancy
between them. As illustrated in Figure 6, both versions of GATRes consistently maintained similar error levels
even under conditions of high uncertainty. In contrast, other models exhibited a noticeable gap in their results
when transitioning from clean to noisy environments.

Table 6
Throughput Comparison in the Clean Test Performed on 24‐Hour Oosterbeek Water Distribution Network at 95% Masking
Rate

Model Throughput (↑) (snapshots per second)

GCNii (M. Chen et al., 2020) 663.80

GAT (Veličković et al., 2018) 2,320.37

GraphConvWat (Hajgató et al., 2021a, 2021b) 90.39

GraphConvWat‐tuned 2,026.65

mGCN (Ashraf et al., 2023) 44.94

GATRes‐small (ours) 749.38

GATRes‐large (ours) 31.21

Figure 6. Baseline mean absolute errors measured for a single snapshot under both clean and noisy conditions.
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Finally, we conducted a detailed analysis of our top‐performing model, GATRes‐small, based on the evaluations
conducted earlier. In this analysis, we intentionally masked sensor locations to observe model inference on those
nodes. Figure 7 illustrates time series data from the predictions of GATRes‐small, a well‐calibrated simulation,
and actual meter readings. As expected, GATRes closely mirrors the behavior of the hydraulic simulation.
Although a slight difference exists between them, both time series were bounded in the range of actual
measurements.

Figure 7. Pressure estimates derived from a hydraulic simulation model and our GATRes‐small, validated against real sensor data from points (a) and (b) within the
Oosterbeek water distribution network.
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6.2. Generalization

This set of experiments is the first attempt aimed to achieve generalization capabilities of our model. We want to
evaluate whether training a model on different topologies simultaneously can equip the model with generalization
capabilities. For this, we chose three different WDNs, whose topologies vary in structure and size. We trained
GATRes‐small on L‐Town, Ky13, and “Large” WDNs simultaneously. This model is named as Multi‐Graph
model. This model was trained with the ReduceLROnPlateau learning rate scheduler from Pytorch library.
The scheduler reduces the learned rate if the model does not improve for a certain number of epochs. The initial
learning rate was set to 5e− 3 and it is reduced by a factor of 0.1 if the validation loss does not improve for 30
consecutive epochs. The batch size was 16, and the model was trained for 500 epochs. Then, to assess the
generalization capabilities of the pre‐trained model we executed two different experiments: zero‐shot inference,
and transfer learning with fine‐tuning.

Zero‐shot inference implies evaluating the pre‐trainedMulti‐Graph model on a fully unseen topology. Hence, we
used the pre‐trained model, directly, to reconstruct the pressures of our use case Oosterbeek, a WDN topology not
seen during training.

The second experiment is transfer learning with fine‐tuning. Transfer learning is a technique motivated by the fact
that humans use previously learned knowledge to solve new tasks faster or better (Pan & Yang, 2009). Hence, the
learned weights by a model trained on some particular network(s) can be transferred to train and improve (fine‐
tune) the prediction capabilities of a model on a new, previously unseen, WDN. In our work, the pre‐trained
model is the Multi‐Graph model, trained on L‐Town, Ky13, and “Large,” and the fine‐tuned model has as the
target the Oosterbeek WDN. Usually, during fine‐tuning, the top layers of the pre‐trained model are frozen and
reused as feature extractors for the target data. We empirically found that unfreezing the entire model and
retraining all layers produce better results. Thus, we initialized the weights of the target model with those of the
pre‐trained one. Then, we reduced the learning rate for training the target model to avoid completely changing the
pre‐trained weights during fine‐tuning. The learning rate was reduced from 5e− 3 in the source model to 1e− 4
during fine‐tuning. The target model was trained with a batch size of 8 for 200 epochs. Fine‐tuning can help
practitioners reduce the implementation time of a predictive model for a completely new and unseen WDN. The
more WDNs are added to the Multi‐Graph model, the broader and more diverse training data. This can reduce the
amount of samples (snapshots) required for training. Analyzing the number of snapshots with respect to the
number of WDNs included in the training procedure is an interesting path for future work.

The results of both experiments are shown in Table 7. They reflect those of Yosinski et al. (2014) who also found
that combining transfer learning with fine‐tuning shows better performance than a model trained directly on a
target data set.

6.3. The Effect of Masking Ratios

To explore the model capability, we investigated the GATRes‐small on myriad masking rates. Identical to the
previous experiment, the model was trained on the synthetic data set generated from our algorithm and performed
a clean test on the 24‐hr data. Both were devised from the Oosterbeek WDN. In addition, each GATRes‐small
corresponding to a specific mask rate was trained within 200 epochs with the default settings. For conve-
nience, we replaced the model name with fixed masking rates in this experiment.

Figure 8 shows the influence of the masking ratio on the proposed model. Each ratio indicates a specific prob-
ability of missing nodal features (i.e., the pressure signals in a snapshot graph). Due to the sensor density being

Table 7
Generalization Evaluation on 24‐Hour Oosterbeek Water Distribution Network

MAE (↓) MAPE (↓) NSE (↑)

GATRes‐small 1.9370 ± 0.0074 0.0703 ± 0.0005 0.7773 ± 0.0025

Multi‐Graph (Zero‐Shot) 3.0597 ± 0.0074 0.0998 ± 0.0005 0.5700 ± 0.0045

Fine‐tuned 1.9097 ± 0.0076 0.0695 ± 0.0005 0.7980 ± 0.0030

Note. Results of GATRes‐small model, trained directly of Oosterbeek, are compared against those produced by the zero‐shot
and transfer learning with fine‐tuning experiments.
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exceptionally sparse in real‐world scenarios, the typical benchmark of 95%, commonly found in previous studies,
is deficient in reflecting this practical issue. Therefore, we report errors occurring in all cases with lower and more
extreme ratios that exceed the standard. As expected, we observe a decreasing trend with increasing masking
rates. This pattern also appears across other metrics in Table 8.

We conducted an additional investigation into the discrepancy between the masking ratios of train‐test pairs. Our
approach involved evaluating a trained model on the 24‐hr Oosterbeek with various masking rates rather than just
the specific rate initially trained. Through this exploration, we found that the best model of a specific testing
masking rate was unnecessary to be trained on this rate. Table 9 showed this phenomenon in extreme ratios.
Considering the trade‐off between sparsity and performance, the model trained with a 97% masking rate
demonstrated a Pareto‐optimal solution. In addition, it surprisingly achieved the best results in extremely sparse
test rates (i.e., >98%). This means that at most 3% of the total nodes would be sufficient for a quality model to
monitor the Oosterbeek WDN—a large‐scale network. Further analysis is highly recommended for WDN au-
thorities to balance the trade‐off between efficiency and measurement resources.

6.4. Baseline Comparison on Benchmark WDNs

In this set of experiments we compared the performance of GATRes‐small against two state‐of‐the‐art baseline
models, GraphConvWat (Hajgató et al., 2021a, 2021b) and mGCN (Ashraf et al., 2023). We evaluated the three
models on four benchmark WDNs: Anytown, C‐Town, Richmond, and L‐Town, described in Section 5.1. The

experiments were conducted following the method proposed by Hajgató
et al. (2020) to ensure a fair comparison. Specifically, 1,000, 10,000, and
20,000 snapshots were generated for the C‐Town, L‐Town, and Richmond
WDNs, respectively. Then, the data sets were split into training, validation,
and test sets in a 6:2:2 ratio.

We used the same experimental settings as proposed in the baseline ap-
proaches to guarantee a fair comparison. Thus, in all experiments the models
are trained for 2,000 epochs with early stopping, using the Adam gradient‐
based optimization algorithm (Kingma & Ba, 2014). The GraphConvWat
model training was stopped if the validation loss did not improve for 50
consecutive epochs. In the case of mGCN, the training was stopped if no
improvement is seen after 250 epochs. Likewise mGCN, our model training is
stopped after 250 epochs if no improvement is observed. In all cases, it is
considered an improvement when the validation loss decreases at least
by 1e− 6.

Figure 8. Relative errors (mean absolute percentage error) for nodal pressure on different masking ratios (lower is better).

Table 8
Detailed Performance of GATRes‐Small on Different Masking Ratios

Mask ratio (%) MAE (↓) MAPE (↓) NSE (↑) Acc(@0.1) (↑)

20 0.610 0.0265 0.9599 0.9760

50 0.798 0.0286 0.9372 0.9654

70 0.900 0.0331 0.9301 0.9586

90 1.457 0.0544 0.8603 0.9167

95 1.939 0.0703 0.7770 0.8746

96 2.213 0.0800 0.7185 0.8467

97 2.415 0.0867 0.7059 0.8148

98 3.075 0.1091 0.5648 0.7465

99 4.087 0.1414 0.3424 0.6396
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The evaluation of the models' performance on each WDN, with the exception
of Anytown, was using data that included realistic demand patterns per node.
In the case of C‐Town and Richmond, the WDN snapshots for evaluation
were created using a 24‐hr demand pattern time series sampled at 5 min in-
terval. L‐Town evaluation snapshots were created using a 1‐week demand
pattern time series sampled at 5 min interval. Table 10 shows the results of the
performance comparison of 10 runs per WDN, and then the mean and stan-
dard deviation are reported. In order to make the test deterministic we hard
coded 10 different seeds, one for each run. Then, the same seed was used for
each run, for all three models, to ensure a fair comparison of the results. As can
be seen from the table, our model GATRes‐small achieves the lowest MAE in
all WDNs and the lowest MAPE in all networks but Richmond. Likewise,
GATRes‐small achieves the higher NSE in all WDNs but Richmond.

One limitation of previous approaches is the evaluation of model performance
on unrealistic data, that is, an exact copy of the training data distribution (Section 2.2). In previous approaches, the
snapshots representing random WDN states used for training, validation and test are created by the same algo-
rithm. Consequently, the distribution of the data used for testing is a fidelity copy of the data used for training.
However, in practice, the distribution of the real data differs from the data used for training the reconstruction
models, as explained in Section 2.2. Therefore, it is important that the models adapt to circumvent such un-
certainties. Previous approaches achieve impressive performance when tested on replicas of the training data (see
Table 11), but the performance drop is evident when they are evaluated on a realistic scenario (see Table 10).

The density distributions of training and test sets in C‐Town, Richmond, and L‐Town WDNs are shown in
Figure 9. It is clear that the distributions of the training and testing data created by the same algorithm (math-
ematical simulation) are identical, while the distribution of the test data with a demand pattern greatly differs from
the one used during training. This shows the ability of GATRes to adapt to the changes that occur in real life
scenarios. It also shows that other models achieve better results only when evaluated on fidelity copies of the
training data, caused by overfitting due to the large model complexity of the previous approaches. The density
distribution plot in Figure 9b explains the good performance of mGCN on Richmond WDN in terms of MAPE
and NSE (Table 10), the time‐based demand pattern test data set has a similar distribution than the one used for
training.

6.5. Ablation Study

The ablation study presented in this section evaluates the importance of the different components of GATRes
model architecture, and the effect of their removal or alteration on performance. In every run, a specific
component is removed or altered, andGATRes is restored to its original version before a new change is made. The
different variants used in the ablation study are the following:

Table 9
Confusion Matrix of Relative Mean Errors (Mean Absolute Percentage
Error) Between Different Train and Test Masking Ratios (Lower Is Better)

Test mask (%)

Train mask (%)

95 96 97 98 99

95 0.0702 0.0723 0.0725 0.0772 0.0814

96 0.0766 0.0797 0.0784 0.0843 0.0882

97 0.0858 0.0901 0.0870 0.0934 0.0970

98 0.1031 0.1077 0.1018 0.1090 0.1109

99 0.1454 0.1494 0.1388 0.1450 0.1414

Note. Bold and underline are used to highlight the best and second‐best re-
sults for a specific test mask, respectively.

Table 10
Models Performance Comparison on 24‐Hour Demand Pattern Time Series Data

WDN Metrics

Models

GraphConvWat mGCN GATRes‐small (ours)

C‐Town MAE (↓) 14.8860 ± 0.1418 19.9138 ± 0.0948 9.4860 ± 0.1822

MAPE (↓) 0.1028 ± 0.0009 0.1318 ± 0.0005 0.0690 ± 0.0010

NSE (↑) 0.7870 ± 0.0046 0.6310 ± 0.0030 0.8480 ± 0.0075

Richmond MAE (↓) 4.3501 ± 0.0170 2.9690 ± 0.0283 2.8114 ± 0.0899

MAPE (↓) 0.0196 ± 0.0001 0.0128 ± 0.0002 0.0133 ± 0.0005

NSE (↑) 0.9500 ± 0.0000 0.9630 ± 0.0046 0.9390 ± 0.0030

L‐Town MAE (↓) 3.4505 ± 0.0129 1.5928 ± 0.0050 0.9501 ± 0.0086

MAPE (↓) 0.0611 ± 0.0002 0.0305 ± 0.0001 0.0157 ± 0.0002

NSE (↑) 0.5040 ± 0.0049 0.8000 ± 0.0000 0.9000 ± 0.0000
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Without Residual Connections (woResCon). The residual connections used within each GATRes Block
are removed.

Without Mean Aggregation (woMeanAggr). The Mean Aggregation applied after the second convolution
within each GATRes Block is removed and the residual connection is added to the output of the second
convolution.

Without Residual Connection andWithout Mean Aggregation (woResCon‐woAggr). Both, the residual
connection and the mean aggregation are removed from the GATRes Block.

Mean Aggregation Outside the Block (MeanAggrOut). Instead of applying a mean aggregation within
each block, it is applied only once in the forward pass, after the output of the last GATRes Block and
before the final Linear layer.

These experiments were performed by training GATRes‐small on the C‐Town WDN. As can be seen in Table 12,
removing the Residual Connections produced the highest negative impact on model performance for all metrics.

Table 11
Models Performance Comparison on Synthetic Sampling‐Based Snapshots Following (Hajgató et al., 2020) Approach

WDN Metrics

Models

GraphConvWat mGCN GATRes‐small (ours)

Anytown MAE (↓) 5.1044 ± 0.0714 3.9460 ± 0.0642 3.9245 ± 0.1056

MAPE (↓) 0.0654 ± 0.0012 0.0497 ± 0.0009 0.0491 ± 0.0012

NSE (↑) 0.7440 ± 0.0049 0.8020 ± 0.0075 0.7980 ± 0.0189

C‐Town MAE (↓) 4.1619 ± 0.0170 1.6963 ± 0.0133 1.8928 ± 0.0149

MAPE (↓) 0.0354 ± 0.0001 0.0148 ± 0.0001 0.0169 ± 0.0001

NSE (↑) 0.9640 ± 0.0049 0.9900 ± 0.0000 0.9900 ± 0.0000

Richmond MAE (↓) 2.3999 ± 0.0069 0.6363 ± 0.0061 1.5979 ± 0.0106

MAPE (↓) 0.0110 ± 0.0000 0.0029 ± 0.0000 0.0080 ± 0.0001

NSE (↑) 0.9805 ± 0.0003 0.9900 ± 0.0000 0.9750 ± 0.0009

L‐Town MAE (↓) 1.2970 ± 0.0036 0.2441 ± 0.0014 0.4930 ± 0.0028

MAPE (↓) 0.0159 ± 0.0000 0.0030 ± 0.0000 0.0061 ± 0.0000

NSE (↑) 0.9700 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000

Figure 9. Comparison of density distributions of synthetic and time‐based data sets in C‐Town, Richmond, and L‐Town water distribution networks. The
Simulation‐training and Simulation‐test curves represent the density of pressure heads created without including demand patterns. On the contrary, Time demand
patterns‐test represent the data created using the demand‐patterns time series.
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7. Discussion
In this section, we generally discuss our findings and technical changes that affect our model in estimating
pressures on WDNs. We first review changes that made GATRes versions outperform other baselines and their
limitations. Then, we discuss the role of synthetic data and the relationship between hydraulic simulation and
data‐driven models. Finally, we address the question of generalizability in the context of our research.

7.1. General Findings and Limitation

We first remark that our GATRes satisfies the predefined criteria: (C1)Generalizability by GATRes being a
spatial‐based GNN approach that has topology awareness in its decision, (C2)Adaptability by random masking
that dynamically changes sensor positions and myriad contextual snapshots from our data generation tool, and
(C3)Robustness by effectively evaluating the model on unseen time‐relevant data with respect to uncertainty
conditions.

In addition,GATRes achieved pressure reconstruction with an average relative error of 7% and an absolute error of
1.93 water column meters on a 95% masking rate (see Table 4). We attribute its success primarily to the
fundamental blocks and training strategy. These blocks update the weights of connections using nodal features
and, therefore, relax the original topology in a given WDN. This relaxation provides robustness and generaliz-
ability toGATRes in uncertain conditions and across diverse network topologies, which may vary in size, headloss
formula, and component configurations. Furthermore, GATRes utilizes a random sensor replacement strategy,
eliminating the need for time‐consuming retraining when a new sensor is introduced in the future. For these
reasons, both blocks within the architecture and training strategy sharpen a GATRes as a highly reusable and
sustainable solution for predicting pressures in numerous WDNs.

The significance of the improvement in performance of our model with respect to previous approaches was
assessed using the Wilcoxon signed‐rank and the paired t‐test tests. The results obtained for C‐Town, Richmond,
and L‐Town benchmark data sets show to be statistically significant with a value p≪ 0.05, and comparable to the
performance of mGCN model only for Richmond data set. In terms of applicability, previous studies found a
relationship between leakage and pressure, and suggested that proper pressure management is crucial for reducing
water loss (Y. Li et al., 2022; Zhou et al., 2019). Therefore, having a model that improves the pressure estimation,
and taking into account that such improvement is statistically significant, the applicability of our model for
solving problems related to leak detection and localization is worth to consider as a future work.

However, it is essential to acknowledge the limitations whenGATRes comes to scale. The limit becomes apparent
when comparing the larger and smaller versions of GATRes in Tables 4 and 5. The larger GATRes eventually
reaches a saturation point of performance and is surpassed by its smaller counterpart. The same finding is
available in both GATConvWat variants. They likely originate from inherent issues in GNN, such as over‐
smoothing and over‐squashing, where nodes tend to propagate redundant information excessively (Di Gio-
vanni et al., 2023). While GATRes employs residual connections that partially mitigate the over‐smoothing and
mainly contribute to the model performance, as shown in Section 6.5, they are unable to eliminate this phe-
nomenon completely (Kipf & Welling, 2017). To address these issues in the future, potential solutions may
include exploring graph rewiring strategies and subgraph sampling techniques.

Table 12
Ablation Study of GATRes Evaluated on C‐Town 24‐Hour Time Series Data

Variants MAE (↓) MAPE (↓) NSE (↑)

GATRes‐small 09.4860 ± 0.1822 0.0690 ± 0.001 0.8480 ± 0.0075

woMeanAggr 09.7479 ± 0.1444 0.0686 ± 0.0009 0.8473 ± 0.0046

woResCon‐woAggr 10.0934 ± 0.1644 0.0735 ± 0.0010 0.8150 ± 0.0062

MeanAggrOut 10.3735 ± 0.1251 0.0735 ± 0.0006 0.8333 ± 0.0058

woResCon 11.5362 ± 0.1697 0.0815 ± 0.0008 0.7694 ± 0.0089
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7.2. Benefit of Synthetic Data

Incorporating generated snapshots into the training of deep models not only enhances their capabilities but also
highlights the value of synthetic data, especially in situations where dynamic data is limited or sensor placements
change. These common issues have been found in many public benchmarks, such as five reviewed water networks
in Section 5.1 due to the missing historical patterns and privacy issues. They have made reproducibility a
persistent challenge in water network research.

As a solution, our data generation tool extends the limits in approaching these public networks without confi-
dential matters. For practical purposes, the synthesized training set could involve as many cases as possible,
reducing the risk of long‐term incidents that may not have occurred in historical records. Thus, it boosts model
robustness when dealing with unforeseen scenarios.

7.3. Relationship Between Hydraulic Simulations and GATRes

Yet, an intriguing question arises: Can we replace traditional mathematical simulations with data‐driven models
like GATRes? Conventional simulation bridges the interaction between hydraulic experts and the WDN in water
management. Such an interaction should be preserved in the design or analysis phase. In the deployment,
especially for Digital Twin or water systems on big data, pressure estimate models often deal with heavy
computation and require a low response time (Pesantez et al., 2022). In this case, GATRes and GNN variants can
be alternative approaches due to their competitive results and impressive throughput (see Table 6). However,
these deep models may involve the risk of over‐relaxation of energy conservation laws and other constraints
within the actual networks. The risk is often minimal in pure physics‐based simulations.

Accordingly, these simulations still play a critical role in data synthesis as they define a valid boundary for newly
created models thanks to their generated training samples and testing environments. When fast computation is
required,GATRes is a good alternative to estimate the pressure of a largeWDN given unlimited sensor streams. In
the future, it is potential to focus on physics‐inspired models that can regularize GATRes to preserve fundamental
physical laws and yield more confident results.

7.4. Generalization

GATRes is able to generalize to previously unseen WDNs by design given the ability of spatial methods (e.g.,
GAT ) to generalize across graphs (Bronstein et al., 2017). On the contrary, previous works that rely on spectral
approaches suffer from the generalization problem because their convolutions (e.g., ChebNet) depend on the
eigen‐functions of the Laplacian matrix of a particular graph (S. Zhang et al., 2019).

GATRes trained on multiple WDNs simultaneously produced a MAE of 3.06 m and a MAPE of 9.98%, on
average, at zero‐shot inference on 24‐hr Oosterbeek WDN. These results shows a promising direction given that
pressure estimation was performed on a completely different, previously unseen, WDN and they do not deviate
significantly from those obtained with the GATRes‐small model. The zero‐shot inference offers immediate
monitoring of a target WDN given a sufficiently pre‐trained model, eliminating the need for data generation and
model training specific to each WDN. These results can be improved by adding more WDNs in the pre‐training
data and exploring self‐supervised pre‐text tasks like nodal degree estimation, link predictions, and shortest paths.
Moreover, the fine‐tuned model, on the target data set Oosterbeek, produced a reduction in MAE of 1.41% with
respect to the model trained directly and only on Oosterbeek.

The results of our first attempts toward generalization (see Table 7) show that our approach is worth further
exploration. GNN models fail to generalize when the local structures of the graphs in the training data differ from
the local structures in the test data (Yehudai et al., 2021). In our case, the term “local structures” does not refer
only to topology but also to water system components. By training the model with several WDNs and myriad
scenarios, we can better prepare for unforeseen configurations and potentially include or approximate themwithin
our data set. This can mitigate the impact of the heterogeneity in terms of number and type of system components.
Then, a possible explanation of the generalization capabilities of GATRes is the training on several WDNs
simultaneously. Using graphs that differ in size and structure, for training, allows GATRes to learn a richer set of
local structures that may be present in the target WDN.
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Despite these promising results, several questions remain unanswered. For example, how to choose the right
WDNs in order to enrich the training data in terms of local structures' diversity? How to design a pre‐trained task
that can effectively capture the local‐level patterns and extrapolate those to unseen larger graphs? How to train a
GNN‐based foundation model, in the Water Management Domain, that can be applied on different downstream
tasks on any WDN topology? All these questions open paths for future research directions.

8. Conclusions
In this work we presented a hybrid, physics‐based and data‐driven, approach to address the problem of state
estimation inWDNs.We leveraged mathematical simulation tools and GNNs to reconstruct the missing pressures
at 95% of the junctions in the network, from only 5% of them seen during training. We also tested our approach on
more extreme cases of sensor sparcity, reaching up to 99% masking rate. The outcome of our work is a new state‐
of‐the‐art for pressure estimation in WDNs, with two main contributions. First, a training strategy that relies on
random sensor placement making our GNN‐based estimation model robust to unexpected sensor location
changes. Second, a realistic evaluation protocol that considers real temporal patterns and noise injection to mimic
the uncertainties intrinsic to real‐world scenarios.

Ourmodelwas evaluated on a large‐scale network, inTheNetherlands, showing a clear improvement over previous
approaches.GATRes obtained an averageMAE of 1.94m,which represents an 8.57% improvement with respect to
other models. Similarly, it showed an average reduction ofMAE of≈40% on otherWDNbenchmarks with respect
to previous approaches. We attribute the high performance ofGATRes to its building blocks and training strategy.
These blocks relax the original topology leveraging nodal features to re‐weight the connections by means of an
attention mechanism. Despite its success, there are still some aspects that demand further exploration. On the one
hand, while the residual connections mitigate the over‐smoothing problem, inherent to GNNs, the phenomenon is
not completely removed. Therefore, other techniques such as graph rewiring and subgraph sampling would be a
fruitful area for further work. On the other hand, our multi‐graph pre‐training strategy is a promising direction
toward model generalization and transferability in the WDN domain. Nonetheless, further research is needed to
explore the connection between network topologies and pre‐training tasks, as well as the applications of state
estimation models such as pipe burst identification, leak localization, and anomaly detection.

Data Availability Statement
In this section, we provide an overview of the publicly available benchmark water distribution networks and
libraries that were employed in our study. Specifically, three networks, including Anytown (Walski et al., 1987),
C‐Town (Ostfeld et al., 2012), and Richmond (Van Zyl, 2001), are included in (Hajgató et al., 2021a, 2021b). The
L‐town data set is referenced in the paper by (Vrachimis et al., 2022), while the Ky13 benchmark (Hernadez
et al., 2016) can be readily obtained via a free download on https://www.uky.edu/WDST/database.html. The
“Large” network is referenced in the “Availability of Data and Materials” section in (Sitzenfrei et al., 2023). The
Oosterbeek water network is not publicly available, as it is provided under confidentiality by the water provider
Vitens.

The data generation tool was constructed using the Epynet wrapper, a third party library, publicly available on
https://github.com/Vitens/epynet, and is licensed under Apache‐2.0. We also leveraged the WNTR library (Klise
et al., 2018) and Ray version 2.3.1 (Moritz et al., 2018) in our implementation.

Our datasets are organized in the zarr format, a file storage structure created using the Zarr‐Python package
version 2.14.2 (Miles et al., 2020), which is licensed under MIT. These data sets were employed in training both
baseline models and GATRes variants using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019). The data set generation tool and GATRes model are publicly available on https://github.com/
DiTEC‐project/gnn‐pressure‐estimation (Truong et al., 2023).
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