
ICST Transactions on Ubiquitous Environments Research Article

Reduced Context Consistency Diagrams for
Resolving Inconsistent Data
Viktoriya Degeler∗, Alexander Lazovik

Distributed Systems Group,
Johann Bernoulli Institute, University of Groningen,
Nijenborgh 9, 9747 AG, The Netherlands

Abstract

The ability of pervasive context-aware systems to perform efficiently relies on their ability to gather full
and unambiguous information about the environment. But raw data collected from sensors is often noisy,
imprecise and corrupted, which leads to inconsistencies and conflicts in gathered data. Also environment is
only partially observable, thus allowing ambiguities in the knowledge about its state. In the paper we present
reduced context consistency diagrams (RCCD), data structures that allow to store the information about the
environment even with the presence of inconsistencies, conflicts, and ambiguities. We provide a mechanism
for reasoning about the current situation using these diagrams, and show how to obtain information about the
most probable situation at each moment of time. The case study shows the 50% reduction in incorrect sensor
readings. The evaluation shows RCCD to be applicable to real-time context inference problems.

Received on 21 July 2011; accepted on 5 November 2012; published on 26 November 2012

Keywords: Context-aware computing, context reasoning, context inconsistencies.

Copyright © 2012 Degeler and Lazovik, licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/trans.ubienv.2012.10-12.e2

1. Introduction

Pervasive context-aware systems become increasingly
more complex and penetrate our daily life in forms of
smart environments [13], context-aware applications on
mobile devices, context aware autonomous systems, etc.
The ability of such systems to perform efficiently fully
relies on the ability to obtain the most detailed, specific,
and correct information about the environment.

However, before high-level applications may use
the information to make the appropriate decisions
and adjust their behavior, several steps are required
to obtain the information in a proper form. First
of all, raw sensor readings should be gathered by a
system’s middleware from surrounding sensors. Then
they should be pre-processed, converted to a logical
form, and combined together to obtain an image of
the current environment. Afterwards the information
should be converted to a form, understandable by a
high-level application.

∗Corresponding author. v.degeler@rug.nl

Unfortunately, several challenges arise during this
process. The sensors are often noisy, imprecise, and
their readings are easily corrupted, which may lead to
inconsistencies and conflicts in gathered data. Also, the
full information about the environment is practically
impossible to obtain. Some portions of the environment
can not be physically read by given technology, and
there is always something happening that sensors miss
to detect, e.g. the study by Jeffery et al. [12] showed that
in dynamic environments the percentage of correctly
read RFID tags may drop down to 60-70%. Another
issue of sensor readings gathering is that information
becomes obsolete rapidly. The data that was correct
at the time of reading may be already obsolete when
it reaches the system middleware and gets processed.
The asynchronous nature of sensor readings leads
to alterations in the order of readings arrival to
the middleware. Finally, the automated processing of
sensor readings to an interpretation of the environment
may introduce errors by itself. The classical examples of
such errors are image recognition mistakes.

In the presence of a conflict among sensor readings,
the conventional research [5, 20] suggests to discard

EAI European Alliance
for Innovation 1

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<v.degeler@rug.nl>

V. Degeler, A. Lazovik

one of the readings that is deemed as incorrect one
based on some heuristic strategy. Different heuristics
are proposed, among which the removal based on
relative frequency [5], drop-latest, drop-oldest, drop-
all, or drop-random [20] strategies.

Such a removal is usually done as soon as a
conflicting sensor reading is received, to keep the full
interpretation of an environment without conflicts.
The removal of sensor readings in an ambiguous
situation may, however, cause even more problems,
in case the correct sensor reading is removed instead
of an incorrect one. The more cautious approach that
removes all conflicting sensor readings, may drastically
reduce the available amount of information, which is
used by high-level applications to make decisions.

In [6] we introduced originally context consistency
diagrams (CCD), which are capable of storing all
gathered information, and define several possible
context interpretations in a presence of a conflict or
an ambiguity, either because of incomplete knowledge
about the environment, or because of erroneous sensor
readings. If all the information is kept, further sensor
readings help to refine the knowledge and make more
informed decisions about the correctness of certain
sensor readings. In this paper we extend a notion
of CCD and introduce a reduced context consistency
diagram (RCCD) for dealing with inconsistent and
incomplete data, which severely reduces the resulting
diagram size comparing to the original full CCD.
The CCD and RCCD are capable of storing all the
information without discarding anything, even if the
data has conflicts. RCCD, while having a less extensive
querying capabilities than CCD, requires much less
computational and storage power. Pervasive systems
can implement either CCD or RCCD mechanism to deal
with ambiguous or conflicting context data.

The rest of the paper is organized as follows. Section 2
overviews a proposed architecture of a context-aware
system with implemented CCD or RCCD functionality.
In Section 3 we formally define environment and an
information about it in a form of different contexts.
Section 4 introduces CCD. RCCDs are introduced in
Section 5, and their respective maintenance is described
in Section 6. Section 7 shows querying capabilities of
RCCD, and describes a way to obtain useful information
about the state of environment out of them. In Section 8
we present some complexity considerations over CCD
and RCCD, and in Section 9 we perform a case
study and evaluate performance of RCCD. Section 10
discusses the related work. Finally, in Section 11 we
provide our concluding remarks.

2. System overview
In this section we describe a system that collects
raw sensor readings and interprets them to create an

Figure 1. Context reasoning using CCD.

image of the environment. A high-level overview of the
proposed system architecture is shown in Figure 1.

At the bottom level the sensors read the state of
certain entities and pass it to the system’s middle-
ware. Readings can be of different nature, with the
most common being a stream of ‘variable = value’
pairs, for example T V channel = sports. Also ranges of
values can be given, if a sensor is imprecise. After
the system obtains this raw sensor data, a rule-based
pre-processing is performed. The rules define the
interdependence of variable among each other, and
the limitations that one variable value puts on other
variables. The pre-processing transforms a raw data
into a context information. For example, as shown
in Figure 1, a rule (T V sound = max =⇒ T V channel ∈
{sports, shows}) is applied to a sensed value (T V sound =
max). The resulting pre-processed context (T V sound =
max, T V channel ∈ {sports, shows}) is then passed to a
context subsystem, which is shown in the figure as
“CCD representation” layer. This layer will be described
in details in further sections. The CCD (or RCCD)
structure is responsible for efficient storage of acquired
context information, resolving inconsistencies, answer-
ing to queries, or triggering events to the subscribed
top-level applications. CCD allows efficient represen-
tation of acquired context information together with
all possible context inconsistencies and interpretations.
CCD is considered inconsistent, if there is no single
interpretation that is confirmed by all sensed (and then
pre-processed) data. Ideally, conflicts caused by a failed

EAI European Alliance
for Innovation 2

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

sensor or by data expiration should not stop the sys-
tem from providing the best possible interpretation for
the acquired context information. Several techniques
exist to resolve an ambiguous conflict in favor of one
interpretation. But if the resolution is incorrect, further
interpretations of a situation will also be wrong, even
if further information may show that another solution
was preferable.

To deal with this, CCD keeps several interpretations,
each with its own probability of being true. We
associate a likelihood of being true to each acquired
chunk of data. Whenever chunks “support” each
other (there is an interpretation of a situation that
is consistent with all of them), their mutual truth
likelihood is higher comparing to the conflicting
ones. Additionally, each arrived and pre-processed
information shares a certain degree of truth likelihood,
thus compensating the effect of a faulty sensor over
the inferred information received from that particular
sensor. The most probable interpretation is then the
one that is “supported” by the majority of consistent
contexts. Even if a particular context does not support
the most “popular” interpretation, it is still stored in
a CCD. It might happen that with the acquisition of
new data, the context is considered more likely, if the
new data supports it. With such a structure the context
interpretation is never final, as new data may change
the interpretation by contributing to an interpretation
previously considered wrong.

High-level applications can use CCD layer for
obtaining different information about the environment.
One of such possible usages is querying. Among the
queries that CCD supports are “What is the most
probable situation at this moment of time?”, “What
are the probable values of a certain variable?” (For
example, in Figure 1: “What are probable values of TV
channel?”), “Assuming certain additional information,
what are the probable values of a certain variable?” (For
example, “Assuming TV channel is ‘sports’, what is the
probability distribution of TV sound values?”), etc.

Another possible usage of CCD layer is event
subscription, which commonly appears in a form “Notify
as soon as a certain situation happens with a certain
probability.” (For example, “Notify in case TV channel
is ‘sports’ with probability more than 0.8.”)

3. Environment and context

A server that collects raw data (pre-processing layer
in Figure 1) obtains information from the underlying
layer in a form vi = dij , i.e., a variable vi has a value
dij . It is possible that the sensors return a set of values,
i.e., vi ∈ {dij1 , dij2 }. For example, a location variable may
be sensed by a sensor (e.g. RFID) that is known to be
imprecise.

Definition 1 (Environment). An environment 〈V ,D〉
is defined by a set of context variables V =
{v1, v2, ..., vn}. Each variable vi varies over a domain
Di = {di1, di2, ..., dimi } with size mi .

Many variables either cannot be directly observed, or
can only be partially sensed. If the heating mechanism
is broken, we can sense that the heater is turned on,
but we cannot observe if it actually started to heat the
room, unless we have a reliable temperature sensor.
Fortunately, many variables influence each other. For
example, it is impossible to have a light turned on, if
there is no electricity in the house; a location of a person
and of the tool that she works with must be the same,
etc. If these correlations are taken into account, even a
few observed variables may give an overall, yet possibly
incomplete, knowledge about the environment.

Definition 2 (Context, Interpretation). For a given environ-
ment 〈V ,D〉, a context c is a valuation of all variables
in V with a non-empty subset Dc of D. If all variables
vi are assigned one and only one specific value in Di , a
context is called an interpretation.

Non-emptiness ensures that a context is always
possible in practice, i.e. each variable has at least one
possible value.

We represent a context by enumerating its possible
context variables values: Dc0, . . . , D

c
n, or, alternatively, as

v0 ∈ {d0l , . . . , d0k}. We write c.vi to refer to i-th variable
of context c.

Our knowledge about an environment is described by
a set of contexts c0, . . . , cn. If for any two interpretations
x, y s.t. ∀ci : x ∈ ci ∧ y ∈ ci , it follows that x = y, then we
have complete and unambiguous knowledge about the
given environment.

More than one interpretation represents an ambi-
guity or incomplete knowledge of the environment.
Intuitively, each new sensor reading adds some more
knowledge about the environment, thus it reduces the
number of possible interpretations. Faulty contexts can
be detected when an impossible situation is created, i.e.
when there is no interpretation x, s.t. ∀ci : x ∈ ci .

For example, in Table 1a a portion of a smart home
is modelled by 4 variables. In Table 1b, few pre-
processing rules are defined that represent the inter-
relation between the context variables. Note though,
that it is not important how these rules are defined,
as far as they result in a context information shown in
Table 1c. The first two rules represent basic physical
laws: there must be electricity in the house for the light
and TV to be turned on, and the TV volume must be
higher than null if the TV is turned on; and the third
rule is set specifically by a smart house’s resident: if the
channel is set to TV ‘shows,’ the room’s light should be
turned off. Using these rules, from a reading that the
light is on, we infer that the electricity is on, and if the
TV is on as well, the channel is definitely not ‘shows.’

EAI European Alliance
for Innovation 3

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

V. Degeler, A. Lazovik

Table 1. Example of environment and context creation.

(a) Variables.

Variable Domain
Electricity off, on
Light off, on
TV off, news, sports, shows
TV sound 0, 1, 2, 3

(b) Dependency rules.

¬(E = of f ∧ Light and TV can be turned on
(L = on ∨ ¬(T V = of f))) only if electricity is on.

¬(T V = of f ∧ Non-silent TV sound means
T V s ∈ {1, 2, 3}) TV is turned on.

T V = shows⇒ L = of f If TV channel is ‘shows’,
light should be turned off.

(c) Sensor readings and contexts.

ID Sensor reading Context
c1 T V = Sh E : 1 | L : 0 | T V : Sh | T V s : 0123
c2 T V s = 2 E : 1 | L : 01 | T V : NSpSh | T V s : 2
c3 L = 1 E : 1 | L : 1 | T V : 0NSp | T V s : 0123
c4 T V ∈ {Sp, Sh} E : 1 | L : 01 | T V : SpSh | T V s : 0123

A set of contexts C = {ck} is consistent if there exist
at least one interpretation x : x.vi = diji ,∀i ∈ 1..n such
that diji ∈ ck .vi , ∀ck ∈ C, ∀i ∈ 1..n. A set of contexts is
inconsistent otherwise.

Additionally, we define two relations over contexts:
Inclusion: c1 ⊂ c2 iff ∀i ∈ 1..n : c1.vi ⊂ c2.vi Inclusion

can be viewed as a relation of a more precise and
less precise contexts. If c1 ⊂ c2 then context c1 is more
precise, than c2, in other words, each variable of c1
contains less values that are possible.
Intersection: cu =

⋂k
j=1 cj = c1 ∩ c2... ∩ ck iff ∀i ∈ 1..n :

cu .vi = c1.vi ∩ c2.vi ... ∩ ck .vi An intersection of inconsis-
tent contexts always equals to ∅. An intersection of
consistent contexts is a context, that is at least as precise,
that any of the originals: ∀j ∈ 1..k cu ⊆ cj .

4. Context consistency diagram
To compactly represent all possible interpretations for
a given set of contexts, we use relations defined in the
previous section, thus forming a diagram with arrows
representing inclusion relation. Any two contexts ci , cj
are connected in the diagram, if ci ⊂ cj , and there is no
such ck , so that ci ⊂ ck ⊂ cj .

The idea of putting contexts into the diagram
structure is essentially an introduction of a compact
representation of all possible interpretations of the
environment. The “full domain” context is always at the
top, meaning “no information is received; any situation
is possible.” Starting from the top and going down,
contexts become more and more restrictive, with the
most restrictive (as well as the most knowledgeable)
contexts at the bottom. Formally, CCD is defined as
follows:

Definition 3 (Context consistency diagram (CCD)). Given an
environment 〈V ,D〉 and a set of contexts C0 = {ck}, k ∈

Figure 2. Example of context consistency diagrams.

1..N , a context consistency diagram (CCD) is a tuple G =
〈C, E, r〉, where:

• r = D, is a special context, the root;

• C = C0 ∪ Cu ∪ r where Cu is the full set of
intersections of a power set of C0;

• E ⊆ C × C, such that (c2, c1) ∈ E iff ∃c1, c2 ∈ C :
c1 ⊂ c2 and @cm ∈ C : c1 ⊂ cm ⊂ c2.

EAI European Alliance
for Innovation 4

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

Contexts from a set C are vertices of the diagram and
E is a set of directed edges. In a relationship (c1, c2) ∈ E,
c1 is called a parent, and c2 is called a child. cp is
called a predecessor of cc, and, respectively, cc is called
a descendant of cp if either of the following holds:

1. (cp, cc) ∈ E

2. ∃{ci} ∈ C, i ∈ 1..k s.t. (cp, c1) ∈ E ∧ (ck , cc) ∈
E ∧ (ci , ci+1) ∈ E,∀i ∈ 1..k − 1

We write ψ(c) to denote the full set of descendants of c
and Ψ (c) to denote the full set of predecessors of c.

For a set C0 = {c1, c2, c3}, the corresponding set of
intersections of its power set is equal to Cu = {c1 ∩
c2, c1 ∩ c3, c2 ∩ c3, c1 ∩ c2 ∩ c3}.

For a set of contexts listed in Table 1c the
corresponding CCD is shown on Figure 2.

In [6] we describe in details the characteristics of the
CCD, its properties, and algorithms for maintaining the
CCD in real time.

5. Reduced context consistency diagram
While CCD provides a full picture of the information
together with existing inconsistencies, it is a verbose
structure that shows all the possibilities of environment
knowledge explicitly, thus at the expence of computa-
tional and storage power.

For this we devised the way to reduce a classic
CCD, while still keeping the knowledge about existing
inconsistencies intact. The reduced context consistency
diagram (RCCD) uses the fact that some of those nodes
that are not received from sensor readings, but are
created as intermediate ones, are combined together
to create a more knowledgeable common descendant.
If this is the case, those intermediate nodes can be
truncated from the diagram, while still keeping the
information about the most probable situation.

For example, in the case, described in Figure 3a a full
CCD is shown for the following three contexts:

c1 = (v1 ∈ (0, 1, 2); v2 = 1; v3 ∈ (1, 2))

c2 = (v1 = 0; v2 ∈ (0, 1); v3 ∈ (0, 1, 2))

c3 = (v1 ∈ (0, 1); v2 ∈ (0, 1, 2); v3 = 2)

However, the three generated nodes of the second tier
can be reduced, as they all are combined in the more
knowledgeable context (v1 = 0; v2 = 1; v3 = 2). The
corresponding reduced CCD is shown in Figure 3b.

Notice that the RCCD may reduce only nodes that
were not originally obtained from sensor readings (in
other words, those nodes that do not belong to C0 group
and do not have associated initial weight w0(c)). In the
same example, the full CCD will be exactly the same as
reduced CCD (both as shown in Figure 3a) in case we
also receive three more sensor readings that account for

(a) Full CCD of three contexts

(b) Reduced CCD of the same contexts

Figure 3. Example of a full CCD (a) and a corresponding reduced
CCD (b)

the following contexts:

c4 = (v1 = 0; v2 = 1; v3 ∈ (1, 2))

c5 = (v1 ∈ (0, 1); v2 = 1; v3 = 2)

c6 = (v1 = 0; v2 ∈ (0, 1); v3 = 2)

The formal definition of RCCD goes as follows:

Definition 4 (Reduced context consistency diagram (RCCD)).
Given an environment 〈V ,D〉 and a set of contexts
C0 = {ck}, k ∈ 1..N , a reduced context consistency diagram
(RCCD) is a tuple Gr = 〈C, E, r〉, where:

• r = D, is a special context, the root;

• C = C0 ∪ Cr ∪ r where Cr is defined as Cr =
⋃
cp ∈

Cu\(C0 ∪ r) s.t. @cc ∈ Cu ∪ C0 : (cc ⊂ cp))

• E ⊆ C × C, such that (c2, c1) ∈ E iff ∃c1, c2 ∈ C :
c1 ⊂ c2 and @cm ∈ C : c1 ⊂ cm ⊂ c2.

The only difference with the Definition 3 of CCD
is the definition of a context set C, which, however,
drastically changes the resulting diagram.

To describe properties of the RCCD we split the
contexts of the CCD into the two categories: solid and
non-solid. A set of solid contexts Cs consists of the root

EAI European Alliance
for Innovation 5

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

V. Degeler, A. Lazovik

and all contexts out of the original context set C0. Non-
solid contexts Cns are all the contexts out of a full set of
intersection of a power set Cu that are not included into
a solid set (thus that are not among original contexts).

Cs = C0 ∪ r (1)

Cns = C\Cs (2)

As in CCD, vertices of the RCCD include all the solid
contexts. However, unlike in CCD, where all non-solid
contexts are also kept, in RCCD they are kept in the
diagram only in case they are the most knowledgeable
contexts.

This leads us to the first property of the RCCD:

Property 1. All non-solid nodes of RCCD do not have
children.

Proof. If a node c ∈ C has a child, then by the definition
of a context set C, this node may not be the part
of Cr , because ∀c ∈ Cr : @cc ∈ Cu ∪ C0 : (cc ⊂ c)). From
facts that C = C0 ∪ Cr ∪ r, and c ∈ C, but c < Cr , follows
that c ∈ C0 ∪ r, and by definition of a solid node from
equation 1, c must be solid. Thus if a node of RCCD has
a child, it is always a solid node. Thus non-solid nodes
do not have children.

The second property of RCCD is:

Property 2. If all nodes with children of a full CCD are
part of the original context set C0, then a corresponding
reduced CCD is equal to the full CCD.

Proof. Solid nodes C0 ∪ r are always part of both CCD
and RCCD context sets, thus only non-solid nodes
differ. We are given that all nodes of CCD with children
are in C0 set, thus for the remaining nodes the following
holds:

∀c ∈ Cu\(C0 ∪ r) : @cc ∈ Cu ∪ C0 : (cc ⊂ c))

which is exactly the definition of correspondingCr from
RCCD. So

∀c ∈ Cu\(C0 ∪ r) : c ∈ Cr
or

Cu\(C0 ∪ r) = Cr

Thus,

Cf ull = Cu ∪ C0 ∪ r = (Cu\(C0 ∪ r)) ∪ C0 ∪ r =

= Cr ∪ C0 ∪ r = Creduced

The fact that Cf ull = Creduced also means that Ef ull =
Ereduced by definition of edges construction. So CCD
and RCCD under the given conditions are equal.

All the original properties of CCD also hold for
RCCD. Those are:

Property 3. For a given set of contexts there is one and
only one non-isomorphic representation of its RCCD.

Property 4. The order of contexts addition does not
change the resulting RCCD.

Property 5. Adding and then removing a context does not
change the resulting RCCD.

The proof of these three properties for RCCD is
exactly the same as for CCD and is presented in [6].

6. RCCD maintenance
In this section we present algorithms to add and remove
a context to the RCCD.

Algorithm 1 Adding context to RCCD

1: function AddContext(context, parent, weight)
2: if ∃ch ∈ parent.children s.t. ch = context then
3: W0(ch)← W0(ch) + weight
4: exit
5: else if ∃child ∈ parent.children.nonsolid s.t.
context ⊂ child then

6: ∀child :Move parents from child to context
7: else if ∃child ∈ parent.children.solid s.t. context ⊂
child then

8: ∀child :AddContext(context, child, weight)
9: else

10: CheckChildren(context, parent)
11: Add link from parent to context
12: end if
13:

14: function CheckChildren(context, node):boolean
15: result ← f alse
16: for all child ∈ node.children do
17: if child ⊂ context then
18: if node is a parent of context then
19: Remove link from node to child
20: end if
21: Add child to context as descendant
22: result ← true
23: else if isConsistent(context, child) then
24: x← context ∩ child
25: if ¬isSolid(child) then
26: Move parents from child to x
27: Add link from context to x
28: result ← true
29: else if ¬CheckChildren(context, child) then
30: Add link from context to x
31: Add link from child to x
32: end if
33: end if
34: end for
35: return result

The addition of a new context to the RCCD is shown
in Algorithm 1. The algorithm is split on two parts:

EAI European Alliance
for Innovation 6

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

AddContext recursively searches predecessors of the
context to find its parents, i.e. contexts, to which the
new context should be added as a child. As soon as those
parents are found, the second part, CheckChildren,
recursively checks if a context is consistent with its
brothers, and a child should be generated.

The first part, AddContext, checks if a parent is a
parent of a context. It starts by checking if there is a
child of a parent, equal to the context. If this is the case,
a corresponding weight is added to the initial weight of
a child, and algorithm finishes its work.

Otherwise it checks, if there are any non-solid
children of a parent that are more general, than a
context. In this case all the parents of such children
are moved and become parents of a context. Note that
this effectively deletes those children from the diagram,
because they do not have parents anymore and non-
solid nodes never have their own children.

If no suitable children are found yet, the algorithm
checks, if there are solid children of a parent that are
more general than a context. In case they are found, the
algorithm repeats recursively for them.

Otherwise we found a parent of a context. Second
part of the algorithm, CheckChildren, is then called,
and a parent adds a context as a child.
CheckChildren function receives two nodes as input,

a context, which is a newly added to the diagram node,
and another node, for which we suspect that its children
may be consistent with a context. We process all the
children of the node in the following manner:

If a child is included into a context, we add it as a
descendant to a context, and remove it as a child from
node, in case a context is already a child of a node.

Otherwise we check for consistency of a context and a
child. If they are consistent, and a child is non-solid, we
remove it from the diagram, and put an intersection of
a child and context in its place. We also add a link from
a context to the new node.

If a child is solid, however, we check, if there is
already (or should be created) a common descendant
between a child and a context by calling CheckChildren
recursively on those nodes. If it returns negative result,
we add a new node (their intersection) to the diagram,
by adding it as a child to a context and a child.

Algorithm 2 describes the removal of an outdated
context from RCCD.

First of all, the context can only be removed in case
the context becomes non-solid after reducing the initial
weight by the amount, corresponding to the outdated
sensor reading. I.e. in case there are no more other
sensor readings that support this context.

If a context has children, we first remove a link from
context parents to it, and than add links from context
parents to its children, connecting them directly.

After this, on lines 14-20 we check non-solid children
of a context, or a context itself in the absence of

Algorithm 2 Removing context from RCCD

1: function RemoveContext(context, weight)
2: W0(context) = W0(context) − weight
3: if W0(context) = 0 then
4: if context has children then
5: for all parent ∈ context.parents do
6: Remove link from parent to context
7: Add all context.children to parent as descen-

dants
8: end for
9: nodes← context.children.nonsolid

10: Remove links from context to all its children
11: else
12: nodes← context
13: end if
14: for all node← nodes do
15: x←

⋂
node.parents

16: if x , node & @brth ∈ node.brothers s.t. brth ⊂
x then

17: Add link from all node.parents to x
18: Remove links from all node.parents to node
19: end if
20: end for
21: end if

children, for the maximum generality. That means that
each such node should stay on the diagram only if it still
has more than one parent, and if the intersection of all
its current parents is exactly equal to a node. It may be
the case that after the removal of a parent, a non-solid
node is now less general, than it should be. In this case
we create a new node x, which is the intersection of all
its current parents, and move all the parents of a node
to x, effectively removing a node from the diagram.

7. RCCD reasoning
In [6] we describe a way to calculate probabilities of all
the interpretations possible using CCD. The method is
applicable and very useful in situations, where sensor
readings are highly erroneous, so system must account
for interpretations that are second- or third- most
probable. The RCCD can not be used for these kinds
of queries, because second-, third-, etc. most probable
interpretations are often reduced in favor of the single,
the most probable one. However, RCCD is capable of
answering to the question “What is the most probable
situation at this moment of time?”. To prove this, we
use the fact that the most probable situation is always
the one among the most knowledgeable situations, i.e.
those that do not have children. Indeed, let’s assume
that a context that contains a most probable situation
has a child. A child is always more knowledgeable
than a parent, in other words it contains a subset of
interpretations that a parent contains. As a child has its

EAI European Alliance
for Innovation 7

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

V. Degeler, A. Lazovik

own weight, only those interpretations of a parent that
are also contained in a child gain this additional weight.
Which by itself means that they become more probable,
than the others. So, we proved that the interpretations,
contained in a child, will always be more probable, than
interpretations of a parent, which are not contained in
any of its children. Which means that the most probable
interpretation of a situation is always the one among
nodes with no children.

RCCD by the definition 4 never reduces nodes that
do not have children, so they are always present on a
diagram. Moreover, all the initial weights from original
contexts are also transferred to these nodes, and all the
consistency among original nodes is kept, as the way
of inheriting nodes in RCCD is the same, as in CCD.
Due to these facts the most probable interpretation
has the biggest weight among all interpretations. The
probability calculation, presented in [6] still can be used
in RCCD for finding the most probable interpretation.

As well as CCD, RCCD never discards any informa-
tion from sensors, and if the most probable interpre-
tation changes with the arrival of a new context, the
RCCD immediately catches this change.

7.1. Unfolding of RCCD to CCD
The previous subsection shows that for systems that are
mostly concerned with a question “What is the most
probable situation at this moment of time?” the RCCD
is a more preferable choice of a diagram, than CCD.
However, even for such systems sometimes there are
cases when additional information about other possible
situations or conditional probabilities are important
to know. Fortunately, the choice of RCCD over CCD
does not permanently hinders the ability to obtain the
answers to these queries. We present an Algorithm 3
that allows to unfold a RCCD to obtain a full CCD.

The function Unf oldNode will be called for every
node of the diagram. At the beginning of the algorithm
the queue contains all the most knowledgeable nodes
(described by RCCD.lastnodes), i.e. nodes that do not
have children. In other words, the algorithm unfolds
nodes from the bottom to the top. The last node to be
unfolded is always the root.
Unf oldNode is called either for all, or for a subset

of node parents. When a node is polled from a queue,
the function is always called for all node parents, but
later it can be recursively called for a subset of them.
The function checks if there is only one parent among
the input parents. If it is the case, it checks, if all the
children of a parent are already marked, and if it is the
case, it adds a parent to the queue. If there are more
than one parent in parents subset, the function tries
to remove a single parent from this subset one by one,
and checks, if the remaining parents can create a more
general consistent child x, than a node. If it is the case,

Algorithm 3 Unfold RCCD to CCD

1: function UnfoldRCCD
2: queue← RCCD.lastnodes
3: while queue is not empty do
4: node← queue.poll()
5: UnfoldNode(node, node.parents)
6: end while
7:

8: function UnfoldNode(node,parents)
9: Mark node

10: if parents.size = 1 then
11: if parents(0).children are marked then
12: queue.add(parents(0))
13: else
14: for all par ∈ parents do
15: x←

⋂
(parents\par)

16: if x , node then
17: for all parent ∈ parents\par do
18: Remove link from parent to node
19: for all child ∈ parent.children do
20: if child ⊂ x then
21: Remove link from parent to child
22: Add link from x to child
23: else if isConsistent(x, child) then
24: y ← x ∩ child
25: Add y as descendant to child
26: Add link from x to y
27: end if
28: end for
29: Add link from parent to x
30: end for
31: Add link from x to node
32: queue.add(x)
33: else
34: UnfoldNode(node,parents\par))
35: end if
36: end for
37: end if
38: end if

the link from all such parents to the node is removed,
and x is added as a child to them instead. Also each
parent checks, if it has other children that either should
now be the children of x (in this case the link from
parent to child is removed, and a link from x to child
is added instead), or that have a consistent child y with
x (y is than added as descendant to both child and x in
this case). After this is done, the link from x to node is
added, and a new node x is put to the queue.

8. CCD vs RCCD complexity
Explicit description of different interpretations in a
CCD can potentially grow in space exponentially with
the number of distinct contexts in the original set.

EAI European Alliance
for Innovation 8

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

However, there are several considerations that help to
keep the size of a CCD reasonable.

The biggest growth of a CCD results from faulty
contexts. While correct contexts tend to have the same
descendants, faulty contexts will generate many new
CCD nodes. With a growth of a CCD, one may discard
contexts that support the most unlikely interpretations,
as most probably they represent faulty or imprecise
sensors.

Each environment in a CCD should only contain
interdependent variables (i.e. associated by dependency
rules, as in Table 1b). We split independent variables on
non-intersecting subgroups and produce a smaller CCD
for each subgroup.

RCCD, on the other hand, produces a much
smaller diagram. First of all, notice that RCCD does
not generate new nodes, unless they are the most
knowledgeable. In case all the contexts are correct, the
maximum number of nodes in RCCD will be Nc + 2,
where Nc is the number of distinct nodes in the original
context set, and the number 2 corresponds to the root
and a possibly generated single child. The child is
single, because if all contexts are correct, they are all
consistent with each other, thus they all have the same
the most knowledgeable descendant.

Each erroneous context potentially adds Nv new
children (alternative “most knowledgeable” nodes),
one per each variable, where Nv is the number of
variables. Thus with the presence of erroneous contexts
the maximum number of nodes in RCCD is equal to
Nc +Nv ∗Nerr + 2, where Nerr - number of erroneous
contexts. Notice that normally we assume a situation,
where Nerr � Nc, thus we expect small sizes of RCCD
in practice. If this is not the case, with bigger numbers
of errors the RCCD size will grow as well.

9. Evaluation
Our evaluation section is split on two parts. First,
in Section 9.1 we show a sample run of the system
and discuss it in details. Second, in Section 9.2 we
make a general overview of system’s performance based
on several experiments, and study the dependence of
system’s performance on different system parameters.

9.1. Case study
To evaluate the system in real conditions we performed
an experiment with several sensors. The setup of the
experiment can be seen in Figure 4.

We used six sensors altogether: 2 acoustic sensors,
2 PIR motion sensors, and 2 pressure sensors. The
sensors are produced by Advantic Systems [1]. They
are IEEE 802.15.4 compliant wireless sensors that use
open-source “TelosB” platform [17]. All sensors are
equipped with ultra low-power 16bit microcontroller

(a) General view on the experimental place.

(b) Acoustic and PIR motion sensors.

(c) Pressure sensor.

Figure 4. System’s experimental setup

EAI European Alliance
for Innovation 9

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

V. Degeler, A. Lazovik

MSP430. The pressure sensor uses the Tekscan® A201-
100 FlexiForce® sensor, which provides force and load
measurements for both static and dynamic forces (up
to 100lb or 400N). The Passive InfraRed (PIR) motion
sensor uses the Perkin Elmer Optoelectronics® LHI878
sensor to detect motion in the given direction. The
SE1000 acoustic sensor has a mini-microphone (20-
16000 Hz, SNR 58 dB) that is designed to detect
the presence of sound. All sensors were configured
to measure intensity of corresponding signals and
thresholds were applied to readouts of each sensor in
order to return a higher-level boolean value (presence or
absence of sound/motion/pressure) once every second.
The data was then sent to the RCCD structure, which in
turn returned the current most probable situation.

Figure 4a shows the general placement of the sensors.
The setup shows the office of a single person and the
idea of using such sensors is to be able to recognize a
current activity of a person. Among those activities we
assume work with or without PC, meeting with another
person, or absence from the working desk. While each
of sensors occasionally produces faulty readings, their
mutual dependencies that we described in terms of
rules, help RCCD to recognize the correct situation.

First we describe, what each sensor is aimed to recog-
nize, then we describe their mutual interdependecies,
and afterwards we will show the results of the experi-
mental run of such a system.

Sensors description. Pressure sensor 1 (P R1) is located
on a chair of the main person in front of the PC, and is
triggered if someone is sitting on this chair.

Pressure sensor 2 (P R2) is located on a “guest” chair,
and is triggered if someone is sitting on it.

Acoustic sensor 1 (AC1) is placed near the keyboard
and is aimed to detect the sound of keys pressing, in
order to recognize the typing activity.

Acoustic sensor 2 (AC2) is a general acoustic sensor
that is aimed to recognize a sound in a room. It is placed
in between the two chairs, because the sound usually
means the conversation between the two people.

We want to note that keyboard typing, while
triggering sound recognition onAC1, is not loud enough
to trigger sound recognition on AC2, thus AC2 remains
silent in this case. However, when two people are
speaking with each other, both acoustic sensors detect
sound. So we can only definitely recognize the keyboard
typing whenAC2 is silent, whileAC1 is detecting sound.

PIR motion sensor 1 (M1) is directed exactly at the
front of the PC (looking directly at the first chair), and is
aimed to detect any motion in this direction. The sensor
gives us additional source of information, and can help
to recognize the innacuracies of other relevant sensors.

PIR motion sensor 2 (M2) is looking directly at the
guest chair, and is aimed to detect any motion on or
around this chair. This sensor as well gives us additional

source of information, and can help to recognize the
innacuracies of other relevant sensors.

Interdependencies rules. As already noted, sensors in our
case study have common dependencies. For example,
when AC2 is detecting sound, AC1 is also detecting
sound (but not the other way around). When a person
is sitting in a chair, both pressure P R1 and motion M1
sensors will detect activity. These and other dependies
we capture by creating the following rules:

“Pressure implies motion.” Both motion sensors are
directed exactly on the chairs, and located very closely
to it. When someone is sitting on a chair, in most cases
the motion sensors detect small motions of a person in
it. We help our system to detect the faulty readings of
no motion by adding these two rules:

P R1 =⇒ M1 (3)

P R2 =⇒ M2 (4)

“Who is typing, if no one is there?” If we detect
no motion, and no pressure from the chair in front of
the PC, and there is no general sound in the room,
the keyboard acoustic sensor should also remain silent.
Thus the third rule:

¬P R1 ∧ ¬M1 ∧ ¬AC2 =⇒ ¬AC1 (5)

Note that given the rule 3, we can cancel out the variable
P R1 from this formula. However, we prefer to keep
it in this format both for ostensive purposes and for
each rule to remain completely independent from other
rules.

“I heard something. Did you hear it?” The first
acoustic sensor is placed very close to keyboard in order
to detect soft noise of keyboard typing, which second
sensor is unable to detect. The second sensor, however,
placed just in the middle of the meeting area, in order
to detect all loud noises in the room, the most common
noise being human speech. The first sensor is able to
detect all those loud noises also, which means it should
always be triggered when the second acoustic sensor
detects something:

AC2 =⇒ AC1 (6)

“Room is busy.” If we detect sound on keyboard
acoustic sensor, and a motion in general area, but not
on the chair in front of the PC, it means the sound
comes from somewhere else in the room, so the second
acoustic sensor should also be able to detect it.

AC1 ∧M2 ∧ ¬M1 =⇒ AC2 (7)

System’s run. We did an experimental run of the system
with the abovementioned setup, to see how RCCD is
able to detect the correct situation. The system was
collecting data for thirty minutes, during which the
situation was the following:

EAI European Alliance
for Innovation 10

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

Table 2. Experiment results

Sensor Number of errors Error rate,% % of errors fixed
Latest Averaged RCCD Latest Averaged RCCD Latest Averaged RCCD

M1 631 563 77 35.06 31.28 4.28 0.0 10.78 87.80
PR1 270 259 274 15.00 14.39 15.22 0.0 4.07 -1.48
AC1 398 336 314 22.11 18.67 17.44 0.0 15.58 21.11
M2 132 116 11 7.33 6.44 0.61 0.0 12.12 91.67
PR2 18 8 9 1.00 0.44 0.50 0.0 55.56 50.00
AC2 160 126 123 8.89 7.00 6.83 0.0 21.25 23.13

Total 1609 1408 808 14.90 13.04 7.48 0.0 12.49 49.78

1. For the first 10 minutes the person was working
with the computer. Thus the expected correct
values of sensors would be:

M1 = true; P R1 = true; AC1 = true;
M2 = f alse; P R2 = f alse; AC2 = f alse

2. Then the short meeting with another person was
held for 5 minutes. The expected values are:

M1 = true; P R1 = true; AC1 = true;
M2 = true; P R2 = true; AC2 = true

3. After this the person was reading papers silently
for 10 minutes. Corresponding expected sensor
values:

M1 = true; P R1 = true; AC1 = f alse;
M2 = f alse; P R2 = f alse; AC2 = f alse

4. Last 5 minutes the room was empty:

M1 = f alse; P R1 = f alse; AC1 = f alse;
M2 = f alse; P R2 = f alse; AC2 = f alse

Results. Now we present the results that we obtained
from the run. The experiment was running for 30
minutes, with sensors sending their readings each
second. The lifetime of sensor readings is set to 5
seconds, so for each sensor we have 5 latest readings
that are still to be considered. This is done in order
to smooth the readings, as many sensors occasionally
return incorrect readings (e.g. for a motion sensor it is
common to return sequences such as “1; 2868; 2852; 1;
1; 2861; 2853”, where high values indicate movement,
and 1 indicates no movement).

We compared the results of three possible sensors
interpretations: first interpretation always takes the
latest sensor reading and considers it correct; second
one takes all readings with valid lifetime and chooses
the most common (average) value; third one uses RCCD
in order to find the expected correct sensor readings.

The results can be seen in Table 2. All sensors
were returning faulty readings from time to time, with
M1 sensor being the least reliable (35% of erroneous
readings), and PR2 sensor being the most reliable with
only 1% of readings being erroneous. While averaging

Table 3. Times seen each number of correct sensors

Correct
sensors Latest Averaged RCCD

0 0 0 0
1 2 1 0
2 11 1 1
3 89 54 44
4 303 262 151
5 682 713 370
6 713 769 1234

the value of sensors over their lifetime helped to reduce
a number of erroneous sensors reading by 12.49%,
the usage of RCCD to get the most probable situation
reduced the number of errors for 49.78%, going from
1609 total erroroneous readings, to just 808.

The more important metric, however, is not just
the total number or erroneous readings, but the total
number of times, when the situation was detected
correctly. The correctly recognized situation is the one
where we know the correct values of all sensors. In our
case we update our knowledge about the environment
each second, and the situation is detected correctly,
if we are able to detect the correct state of all six
sensors during this second. Table 3 shows the total
number of times when certain amount of sensors was
detected correctly. As can be seen, at no point were all
six sensors giving the wrong data, but there were at
least two moments, when only one out of six sensors
was providing the correct data (both of which RCCD
was able to detect and fix), etc. The number of times,
when the situation was detected fully correctly by
latest sensor readings, was 713 (thus sensors were fully
correct 39.61% of the total time). Averaging sensor
reading didn’t help much, with 769 number of times
(thus providing fully correct readings 42.72% of the
total time). RCCD, however, was able to detect the fully
correct situation 1234 number of times, which accounts
for 68.56% of the total time, and is a considerably
higher and better value.

EAI European Alliance
for Innovation 11

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

V. Degeler, A. Lazovik

Figure 5. Dependence of update time on number of sensors.

9.2. Performance

In this chapter we describe, how the system’s
performance depends on parameters of a system. The
experiments are performed on a Intel Core2Duo P7370
2GHz PC with 3 GB RAM running OS Ubuntu 10.04.
The software is written in Java JDK 1.6. The simulated
test environment consists of a test generation part that
generates situation and contexts, and a middleware part
that collects contexts and maintains a diagram.

The most important among all the parameters is
the size of an environment, which is described by a
number of sensors, or variables. We performed several
experiments with the same parameters, while varying
the number of sensors. The context arrival rate is set
to 0.01 seconds; context lifetime is set to 4 seconds
in the first experiment, and 6 seconds in the second.
The test generation part creates a situation. Contexts
are generated based on it with a 5% error rate and
are sent to the middleware part. The results can be
seen in Figure 5. As can be seen in this figure, the
average time needed to update a RCCD with each new
context increases linearly with the increasing of sensors
number, until it reaches some point (in this case 700
variables), after which the time remains on a same level.
This can be explained by a fact that while environments
are relatively small, the increase in the environment
size leads to an increase in RCCD number of nodes.
However, for a certain context arrival rate and a certain
context lifetime there is a certain maximum number
of contexts that are usually present on a diagram
simultaneously. When new contexts arrive, old contexts
are removed, so the number stays on the same level. If
the environment is big enough, this maximum level is
reached, and beyond this the RCCD will not grow, even
if environment has bigger size. Increasing the context
arrival rate, or context lifetime, on the other hand, may
increase this threshold. To prove it we did the same
experiments, but used the context lifetime 4 seconds
instead of 6 seconds, so there was generally a smaller

Figure 6. Dependence of update time on frequency of a situation
change.

number of contexts on a diagram. As you can see in
the Figure 5, the threshold was reached with smaller
environment, around 500 variables, for the smaller
context lifetime with the same arrival rate.

The last but not the least important parameter is
the dynamicity of environment, in other words the rate
at which the situation changes. We performed several
experiment with the same parameters, while changing
only the frequency of situation alteration. The results
can be seen in Figure 6. Note that the average time of
update for 2, 3 and 5 seconds is higher, while for all
others, from 10 to 30 seconds, it stays approximately
on the same level. The reason for this is that in all
those experiments lifetime of a context was set to 6
seconds, and in the first three experiments the situation
changed faster, thus leaving a lot of obsolete contexts
in a diagram and increasing its complexity. The proper
solution for such cases is to decrease contexts lifetime.

10. Related work
Correct context determination is a crucial component
of a pervasive system and has been extensively studied
in the literature. In particular, various authors address
the issue of inconsistent sensor readings and precise
context determination.

Xu and Cheung et al. [18, 19, 21] study the
detection of context contradictions based on predefined
constraints. They propose to convert each constraint
into a tree with constraint operators as vertices and
contexts as edges. Then they introduce a partial
constraint checking (PCC) algorithm that is capable
of re-checking only parts of the constraint tree that
may be affected by a new context. The work is
extended by Huang et al. [10], who propose to check
branches probabilistically. This enables fast processing
of large trees and adds scalability to partial constraint

EAI European Alliance
for Innovation 12

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

CCD RCCD
Computa-
tion efforts

Is rather computationally heavy, though ways
exist to always keep the CCD within the given
size, while losing some information.

Computationally light, can be maintained
and updated much faster, than CCD, and is
capable of handling more data without losing
information.

Information
handling

Keeps all the arrived information in itself, and handles inconsistencies in the existing
information. Further information updates can change the most probable situation.

Quering
and
reasoning

Can be used to find the most probable
situation. Also can rank other situation by
their probability, and answers to the different
kinds of queries, such as “What are the
situations that are at least 20% probable?”,
“What is the second-, third-, etc. most
probable situation?”, “What is the probability
distribution of values of the certain variable?”,
etc.

Has a simple and fast way to find the most
probable situation. Answers to this question
much faster, than CCD.

Inter-
dependence

If needed, RCCD can be unfolded into a full
CCD at any moment of time.

Table 4. CCD vs RCCD comparison

checking, but reduces the percentage of correctly
found inconsistencies. The papers aim at fast detection
of contradictions, while in the present approach
we concentrate on the problem of different context
interpretations after inconsistencies are found. Their
findings can also be combined with our approach, as
inconsistencies found through their method may be
interpreted using CCD.

Bu et al. [4, 5] perform context reasoning by mod-
elling the context ontology and then finding incon-
sistencies using ontological reasoning. The context is
modelled as RDF-triples using OWL-lite language. They
also present a context lifecycle, where new context
starts at "beginning" phase, can be "updated" during
its lifetime, stagnate at "inert" phase and finish its life
as "disappearing". In the presence of a conflict they
propose to discard one of conflicting contexts based
on their relative frequencies. Xu et al. [20] propose
similar resolution strategies, among which are drop-
latest, drop-all, drop-random, and drop-bad. The latter
heuristic counts the number of conflicts for each context
and drops the one with the biggest number. While
those techniques can be used to successfully resolve
the straightforward inconsistencies, our approach is
helpful when proposed heuristics cannot confidently
resolve the conflict, which may lead to retaining the
incorrect interpretation.

Henricksen and Indulska [9] classify context proper-
ties and outline initial ideas on handling several incon-
sistencies. They introduce classification, but do not pro-
vide precise algorithms for dealing with possible con-
text inconsistencies. Lu et al. [15] provide a mechanism
for detecting failures in context-aware applications and
means to test such applications. Huang et al. [11] study

the detection of inconsistencies that emerge due to
asynchronous arrival of concurrent events. The pro-
posed algorithm detects the original order of such
events based on happen-before relation. On the other
hand, we do not consider inconsistencies caused by the
order in which context information is arriving.

Kong et al. [14] propose to extend the OWL ontol-
ogy with fuzzy membership to tolerate inconsistencies.
Their proposal involves manual assignment of mem-
bership values and does not propose a way to retrieve
useful information from it.

A similar fuzzy approach to ours is discussed in [16].
The authors try to minimize the impact of early
incorrect decisions made during software design. They
show that wrong classification of an entity to one
of the mutually exclusive classes if done early, may
lead to further incorrect or suboptimal design of the
software system. They propose to improve the process
by deferring decisions about entity’s classification as
long as possible, instead of assigning fuzzy membership
values to each of possible classes. However, the solution
is not applicable to context reasoning, as it is based on
human decisions about entity’s properties membership
values that have to be updated with each information
change. This is acceptable for the prolonged and slow
software development process, but impossible in highly
dynamic automated context-aware systems.

The search for frequent itemset problem was first
formulated by Agrawal et al. [3], and many algorithms
to solve it use structures similar to CCD and RCCD.
Given a large number of transactions that contain
subset of items from a certain set, the frequent itemset
task is to find subsets of items that appear together in at
least a certain percentage of transactions. The Apriori

EAI European Alliance
for Innovation 13

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

V. Degeler, A. Lazovik

algorithm [2] uses the fact that an itemset is frequent
only if all of its sub-itemsets are frequent, thus finging
a bigger itemsets by combining smaller itemsets. FP-
growth [8] enhances this algorithm by removing the
need to generate all candidates. Alternative Eclat
algorithm [22] uses lattice decomposition to decompose
original powerset of items into smaller sets to process
them independently. Many other proposed algorithms
include tweaks in order to make existing algorithms
faster and more scalable. The survey of such algorithms
by Han et al. [7] describes all the latest advancements
in frequent itemset mining. To the opposite of the
frequent itemset problem, where all transactions are
always correct, context consistency diagrams aims to
find the inconsistencies, and fully or partially incorrect
context readings. The RCCD allows to represent an
environment with many variables, where each variable
has its own set or range of values. Also, contrary to
the frequent itemsets, where a set of transactions is
given in advance, the RCCD structure aims at efficient
representation of gradual changes in context over time,
thus at fast addition and removal of contexts.

11. Conclusion
We introduced reduced context consistency diagrams
(RCCD), novel data structures for reasoning about situ-
ations with incomplete knowledge of the environment
and context conflicts that cannot be unambiguously
resolved. RCCD is able to find the most probable sit-
uation at each moment of time, and can be unfolded
into CCD to obtain the full quering functionality of the
latter diagram. Our experiments show that diagrams
can be efficiently maintained and computed in real-time
and provide a considerable improvement in situation
interpretation by correcting erroneous sensor readings.

In table 4 we collect all the previously given
information to present a concise comparison between
the two structures. That should help to decide, which of
the structures is better suited for given projects.

Acknowledgements. We want to thank prof. dr. Marco Aiello
for useful comments about this work. We also want to thank
Tuan Anh Nguyen for his valuable knowledge and his efforts
in helping us to organize sensor experiments.

The research is supported by the EU project GreenerBuild-
ings, contract FP7-258888, and by the Dutch NWO Smart
Energy Systems program, contract 647.000.004.

References
[1] ADVANTICSYS (2012) URL www.advanticsys.com.
[2] Agrawal, R. and Srikant, R. (1994) Fast algorithms for

mining association rules. Proc 20th Int Conf Very Large
Data Bases VLDB 1215: 487–499.

[3] Agrawal, R., Imieliński, T. and Swami, A. (1993)
Mining association rules between sets of items in large
databases. SIGMOD Rec. 22: 207–216.

[4] Bu, Y., Chen, S., Li, J., Tao, X. and Lu, J. (2006) Context
consistency management using ontology based model.
Lecture Notes in Computer Science 4254, 741–755.

[5] Bu, Y., Gu, T., Tao, X., Li, J., Chen, S. and Lu, J. (2006)
Managing quality of context in pervasive computing. In
QSIC ’06: Proc. Int. Conf. on Quality Software: 193–200.

[6] Degeler, V. and Lazovik, A. (2011) Interpretation of
inconsistencies via context consistency diagrams. In
9th Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom’11): 20–27.

[7] Han, J., Cheng, H., Xin, D. and Yan, X. (2007) Frequent
pattern mining: current status and future directions.
Data Mining and Knowledge Discovery 15: 55–86.

[8] Han, J., Pei, J. and Yin, Y. (2000) Mining frequent
patterns without candidate generation. SIGMODRec. 29:
1–12.

[9] Henricksen, K. and Indulska, J. (2004) Modelling
and using imperfect context information. In Proc. of
the 2nd IEEE Annual Conf. on Perv. Computing and
Communications: 33.

[10] Huang, Y., Ma, X., Tao, X., Cao, J. and Lu, J. (2008)
A probabilistic approach to consistency checking for
pervasive context. In EUC ’08: Proc. IEEE/IFIP Int. Conf.
on Embedded and Ubiquitous Computing: 387–393.

[11] Huang, Y., Ma, X., Cao, J., Tao, X. and Lu, J.

(2009) Concurrent event detection for asynchronous
consistency checking of pervasive context. In IEEE Int.
Conf. Pervasive Computing and Communications: 1–9.

[12] Jeffery, S.R., Garofalakis, M. and Franklin, M.J. (2006)
Adaptive cleaning for RFID data streams. In Proc. of the
Int. Conf. on Very Large Data Bases: 163–174.

[13] Kaldeli, E., Warriach, E., Bresser, J., Lazovik, A.

and Aiello, M. (2010) Interoperation, Composition and
Simulation of Services at Home. In ICSOC, 6470: 167–
181.

[14] Kong, H., Xue, G., He, X. and Yao, S. (2009) A proposal
to handle inconsistent ontology with fuzzy owl. In Proc.
WRI World Congress on CS and Inf. Eng., 1: 599–603.

[15] Lu, H., Chan, W. and Tse, T. (2008) Testing pervasive
software in the presence of context inconsistency
resolution services. In Proc. Int. Conf. on Software
engineering: 61–70.

[16] Marcelloni, F. and Aksit, M. (2001) Leaving inconsis-
tency using fuzzy logic. Information and Software Tech-
nology 43(12): 725 – 741.

[17] Nguyen, T.A. and Aiello, M. (2012) Beyond indoor
presence monitoring with simple sensors. In Proc. 2nd
Int. Conf. on Pervasive and Embedded Computing and
Communication Systems.

[18] Xu, C. and Cheung, S.C. (2005) Inconsistency detection
and resolution for context-aware middleware support. In
Proc. Joint 10th European software engineering conference
and 13th ACM SIGSOFT international symposium on
Foundations of software engineering (ACM): 336–345.

[19] Xu, C., Cheung, S.C. and Chan,W.K. (2006) Incremental
consistency checking for pervasive context. In ICSE’06:
Proc. 28th Int. Conf. on Software Engineering: 292–301.

[20] Xu, C., Cheung, S.C., Chan, W.K. and Ye, C. (2008)
Heuristics-based strategies for resolving context incon-
sistencies in pervasive computing applications. In Proc.
28th Int. Conf. Distributed Computing Systems: 713–721.

EAI European Alliance
for Innovation 14

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

www.advanticsys.com

Reduced Context Consistency Diagrams for Resolving Inconsistent Data

[21] Xu, C., Cheung, S.C., Chan, W.K. and Ye, C. (2010)
Partial constraint checking for context consistency in
pervasive computing. ACM Trans. Softw. Eng. Methodol.
19(3): 1–61.

[22] Zaki, M. (2000) Scalable algorithms for association min-
ing. Knowledge and Data Engineering, IEEE Transactions
on 12(3): 372 –390.

EAI European Alliance
for Innovation 15

ICST Transactions on Ubiquitous Environments
October-December 2012 | Volume 12 | Issue 10-12 | e2

	1 Introduction
	2 System overview
	3 Environment and context
	4 Context consistency diagram
	5 Reduced context consistency diagram
	6 RCCD maintenance
	7 RCCD reasoning
	7.1 Unfolding of RCCD to CCD

	8 CCD vs RCCD complexity
	9 Evaluation
	9.1 Case study
	Sensors description
	Interdependencies rules
	System's run
	Results

	9.2 Performance

	10 Related work
	11 Conclusion

