
Dynamic Constraint Reasoning in Smart Environments

Viktoriya Degeler and Alexander Lazovik
Distributed Systems Group, Johann Bernoulli Institute,

University of Groningen, The Netherlands,
Email: {v.degeler, a.lazovik}@rug.nl

Abstract—Flexible and easily adjustable reasoning mecha-
nisms are essential for rendering sensor and actuator rich
indoor environments smart. Constraint-based solutions are a
suitable approach for such systems. We propose an approach
that allows users to specify the rules for a building’s behavior,
and uses context information to represent the rules and
environment as a dynamic constraint satisfaction problem.
The dependency graph data structure allows to find efficiently
only the affected parts of the environment, thus minimizing
the computational efforts after every event. We evaluate the
system on a building implementation as a living lab, and with
performance experiments. The testing proves the high efficiency
and applicability of the approach for dynamic control of smart
environments.

Keywords-dynamic constraint satisfaction; rule-based sys-
tems; smart environments; predicate logic

I. INTRODUCTION

The recent advancements in pervasive computing area
allow many smart home solutions to hit the market, the goal
of such systems being the ultimate increase in user comfort
and satisfaction levels, as well as efficient operation of the
environment, for example, from the energy and price point of
view. In any smart environment, the autonomy and reasoning
power should be counterbalanced by the ability of users
to fully understand the reasons of the system’s automated
operations and their ability to fully control the system’s
decisions, adapting them to their goals and desires at any
moment of time. Therefore, flexible and adaptable reasoning
mechanisms are essential for environments automation.

Our approach, implemented in the GreenerBuildings [1]
European FP7 project, is to specify scenarios of the build-
ing’s operations via sets of logical rules. The predefined
sets of rules for standard behavior may always be modified
or fully overridden on global or local levels by facility
managers or particular users. The rules combine context
information about the environment with the desired behavior
of actuators, and must at all times be satisfied whenever it
is possible, or be able to communicate failure to relevant
users when impossible. This behavior can be represented as
a constraint satisfaction problem (CSP) model. In particular,
the model falls into the Dynamic CSP (DCSP) [2] category,
due to the necessity to solve the problem over and over
again, every time with small changes (due to changing
environmental context) from the previous task. If costs are
involved, e.g. the desire to find the most energy efficient

way to satisfy current set of rules, the usual CSP task may
need to be solved as an optimization CSP.

Dynamic constraint satisfaction problem (DCSP) as a
set of successive static CSPs with addition or removal of
constraints was first formulated in [3], and subsequently
targeted in many other works [4], [5], [6], [7], [2]. A
comprehensive survey of the related research is presented
in [8]. An alternative definition of DCSP was formulated
in [9], where DCSP defines a single CSP with different
additional sets of variables and constraints depending on
variable values. We use the definition as stated in [3], when
referring to the DCSP.

In the field of smart environments different studies pro-
pose to use the constraint satisfaction to solve reasoning
problems. For example, multi-agent coordination in smart
homes is modelled as distributed constraint optimization
problem in [10]. Each agent manages one or more variables,
and constraints model the desired minimum-cost concurrent
behavior of agents. CSP-based AI planner is used in [11]
to compose services for smart home scenarios. The planner
allows the expression of extended goals and uses the latest
advancements in the CSP field to make the search faster
using enhanced inference techniques.

In this paper, we present the dynamic constraint satisfac-
tion solution of the GreenerBuildings project. The contri-
butions of this paper are several. First of all, we explain
why the straightforward encoding of the problem to the
(D)CSP task does not bring the maximum efficiency, and
how the specific structure of the smart environments domain
can be exploited in order to make CSP models smaller and
every subsequent CSP solution recheck only parts of the
environment. In particular, the existence of context variables
(information from sensors) and controllable actuators, and
the uneven dependency of variables are exploited. By uneven
dependency we mean the existence of highly dependent
subsets of variables (for example, devices that are part of
a common area within a single room) with many intercon-
necting rules, which have very loose or no dependency on
another subset of variables (e.g. devices from a different
room). The main contribution involves the formulation of the
dependency graph data structure, which makes it possible
to split CSP into dynamically independent subtasks, and
to find only the affected parts of the problem every time
a new event arrives to the system, which severely reduces

the size and complexity of the CSP to be solved at every
subsequent step. We also present specific transformation
of rules into a form which makes the dependency graph
possible. Our initial ideas on context-aware rule maintenance
were presented in [12]. In this paper we formally extend
them as DCSP, prove the correctness of the solution, and
present the implementation of the system and its evaluation
in the living lab and with performance experiments.

II. RULE SATISFACTION IN SMART ENVIRONMENTS

The GreenerBuildings project aims to increase the overall
users’ comfort by adapting to their needs. Usually there are
several ways to satisfy them, and the additional goal is to as-
sure the minimum energy consumption of the building, with-
out sacrificing the user comfort. The reasoning is handled
by the Rule Maintenance Engine (RME) component. Via the
web interface the users are able to access the current rules,
modify them, add new ones, etc. The information about the
current state of the environment comes from the Context
component as new sensor readings events. Informally the
RME goal can be defined as follows:

Given a set of user-defined rules of the building’s behav-
ior, and information about the current environment state, the
Rule Maintenance Engine must ensure that: (1) The rules are
satisfied and adhered to. If there are some rules which can-
not be satisfied at this moment, the user must be presented
with sufficient information to identify the cause of this. (2)
Given the satisfaction of the rules, the energy consumption
of the building should be minimal. (3) Decisions should
be made in real-time and be scalable with respect to the
environment size.

There are two types of rules. The RME system handles
them equivalently, but for the users of the system they
represent a difference between what is necessary and what is
desirable. The first type is a dependency between variables.
E.g., a rule desk1.monitor = active ⇒ desk1.pc = on
tells the system that it is not possible to have a monitor in
an active state if the PC to which the monitor is connected is
off. A rule ¬(room1.blinds1 = down∧room1.window1 =
open) represents a physical constraint that blinds can only
be put into down position if the window is closed. The rules
of the second type are in essence user preferences. They
describe the desired behavior of the system. For example,
a rule room1.presence > 0 ⇒ room1.ceilinglamp =
on ∨ room1.desklamp = on represents a desire to have
a light in the room if there are some people inside.

The rules are defined as formulas in a predicate logic
over finite domains. Every atomic predicate represents a
certain condition over a variable, and should result in true or
false. There are several available operations in predicates.
The equality represents that a variable should be equal to
a given value for a predicate to be true. For example:
room313.dimmer1 = 0. Opposite to it, the inequation is
used to forbid a variable to be equal to a certain value,

e.g. room313.dimmer1 6= 0. It is also possible to use a
set of values instead of a single value in both cases, e.g.
room313.dimmer1 ∈ {0; 10; 20} or room313.dimmer1 /∈
{0; 10; 20}. These operations are available for all types of
variables. For ranged variables, i.e. integer or real ones, it
is also possible to use inequalities, i.e. greater (or equal) /
less (or equal) than. For example: room313.dimmer1>50;
room313.dimmer2 ≤ 200. To summarize, the rule with
only a single atomic predicate is represented as:

P ::= (vi = d) | (vi 6= d) | (vi ∈ {di}) | (vi /∈ {di})
P ::= (vi < d) | (vi > d) | (vi ≤ d) | (vi ≥ d), vi ∈ R

Of course, atomic predicates can be combined together to
form logical formulas of any additional complexity, using
the standard logical operators:

R ::= P | ¬R | R ∧R | R ∨R | R⇒ R | R⇔ R

III. ENVIRONMENT DEFINITION AS CSP
The environment 〈V,D〉 is defined by a set of context vari-

ables V = S
⋃
A; S

⋂
A = ∅, where S = {s1, s2, ..., sn} is

a set of uncontrollable variables, and A = {a1, a2, ..., am}
is a set of controllable variables. Uncontrollable variables
S represent sensors, they provide information about the
external environment, and cannot be directly influenced by
the system. They do not necessarily represent a physical
sensor. A variable can represent a combined value of several
sensors, or a result of a certain activity recognition. On the
other hand, controllable variables A can be seen as actuators
that can act in the environment. We assume that it is possible
to change the state of every actuator independently from
other actuators, and that it is possible to transform an
actuator from any state out of its domain to any other state
out of its domain.

Every variable v ∈ V varies over a finite states domain
d(v) with size kv , which can be either a range of integer or
real values, a boolean, or a set d(v) = {dv1, dv2, ..., dvkv}.
Each variable v has a cost function cv(di), associated with
its states domain d(v) that shows the cost of keeping the
variable in this state. For the GreenerBuildings project the
cost is the energy consumption of a device.

The original set of rules Ro contains a set of logical
formulas over variables in V . Every rule r ∈ Ro can be
represented as a constraint to the classical CSP model, which
corresponds to a subset of variables Vr = {vr1, vr2, . . .},
and represents a subset Xr of a Cartesian product over
their respective domain values d(vr1)× d(vr2)× . . ., which
specifies the sets of values of those variables that are
compatible with each other. This subset can be trivially
constructed by constructing the full truth table for a set of
variables Vr, and retaining only those values from a table,
for which the rule evaluates to true.

It is possible to use the original set of rules Ro as a
set of constraints to the CSP task, though we also need
to add the knowledge about the current sensor values to

the problem definition, since we know their values from the
context environment information, and we cannot influence
them directly. For every sensor s ∈ S, if its current value is
ds, one more rule s = ds is added to restrict the sensor. In
this case the natural constraint satisfaction problem for the
smart environment will be defined as follows:

Find a valuation for a set of variables V = S
⋃
A which

satisfies all constraints C = Ro

⋃
Rs, where Ro is the

original set of predefined rules, and Rs is a set of sensor
constraints for every sensor: ∀s ∈ S : s = ds, where ds is
the current sensor value of the sensor s, obtained from the
context information. We will refer to this CSP definition as
CSP (V,Ro

⋃
Rs).

Such CSP representation, however, is very inefficient in
practice. First of all, the CSP task should be solved with
every new sensor change event. For the smart buildings
with hundreds of sensors several of such events arrive
every second, which makes solving the CSP a computa-
tionally heavy task. Also, every sensor change affects only
a small part of the environment, therefore solving from
scratch every time produces a lot of duplicate work. Using
dynamic constraint satisfaction techniques would be more
computationally efficient. Finally, in practice many rules
(constraints) for intelligent environments are only applicable
for a particular situation, which may be active only a small
percentage of the time. For most of the time the constraints
will not be applicable, however they will still need to be
added as a part of the CSP over and over again.

The classic definition of Dynamic Constraint Satisfaction
Problem [3], [4] defines it as a set of successive CSPs, where
every next CSP is created from the previous one by adding
or removing a variable or a constraint. We can represent a
problem in such a way, by representing a change of a sensor
value s ∈ S from dsold to dsnew as removal of a constraint
s = dsold and addition of a constraint s = dsnew. However,
while in the classic definition the domain remains of the
same size, our solution for dynamic constraint satisfaction
of smart environments allows to make the problem domain
smaller for every subsequent CSP, by reusing dynamically
independent parts of the previous problem.

IV. RULE TRANSFORMATIONS

Users may enter rules in any form they like, but to make
the automated processing easier, the rules are transformed
into a special uniform form. Transformations are done once
at the time of addition of a new rule by users (or after a rule
has been modified), and should ensure that the least amount
of processing is kept for the real-time system’s operation.
There are two reasons for transformations.

First of all, we want to split the rule into as many
independent sub-rules as possible. E.g., a rule chair =
occupied ⇒ pc = on ∧ lamp = on should be split into
two different rules: chair = occupied ⇒ pc = on and
chair = occupied ⇒ lamp = on. This will not change

the overall rule satisfaction logic, as all the rules should
be satisfied, however, such splitting ensures that we do not
register a false dependency between two variables “pc” and
“lamp”, as it can be seen that, at least if using only this
rule, they may be satisfied or not satisfied independently.

The second reason is that at the end we want all resulting
rules to have a form Fs(S) ⇒ Fa(A), i.e. some function
of sensors implies a function of actuators. The benefits we
achieve with this are twofold. First of all, the sensors S
cannot be influenced by the system, thus they represent the
situation that is given to us. There is no possibility to directly
influence the antecedent of the equation Fs(S); with the
given context in the current situation it is either satisfied or
not. If it is not satisfied, or let us rather say “the situation
described in Fs(S) does not occur”, then we do not need to
do anything about the consequent of the equation, the Fa(A),
which contains actuators, as the full equation is already
satisfied. The rule is then in “inactive” state, i.e. it is possible
to skip it in the constraint satisfaction problem, which can
help us to severely reduce the search space and decrease
dependencies. If, on the other hand, the Fs(S) is met, i.e.
results to true, then we must ensure that the consequent,
which contains actuators Fa(A), is satisfied. Thus the second
benefit. Since we can only control actuators, only actuator
variables are meaningful for the CSP search space. When
we use such a form, we can only put Fa(A) part of the
formula to the CSP description, and only when we actually
need it to be satisfied.

Finally, to ensure the fastest processing the func-
tions Fs(S) and Fa(A) are transformed into the form∧

s(P (S)) =>
∨

a(P (A)). Here P (S) and P (A) are atomic
predicates with respective variables. The form

∧
s(P (S))

ensures that with every new sensor reading s = ds it is
possible to recheck only a single predicate P (s). The form∨

a(P (A)) is the easiest for CSP solvers to work with.
It is always possible to transform any human-defined rule

into such a form. The actual transformation is done in the
following steps. First of all, the original rule is transformed
into the CNF form. Every conjuncted clause (the disjunction)
in the CNF form is connected by ∧-clause and, since all rules
must be satisfied, may be regarded individually. Therefore
every such a clause will represent a single separate rule
in the resulting set, so often an original rule will result in
several final rules. Every resulting rule is a disjunction of
atomic predicates (possibly negated). On the second step it
is transformed into implication by taking those atomic predi-
cates that contain only sensors, and putting them (in negated
form) into the antecedent of the implication. The next step
is not necessary, and is done only for convenience: negation
is removed from all negated atomic predicates by flipping
the operation. For example, the ¬(room1.dimmer1 > 100)
becomes room1.dimmer1 ≤ 100, and ¬(desk1.pc = on)
becomes desk1.pc 6= on.

For example, let us assume we have a rule that requires

to have light in the room if there are people inside. Light
can be achieved either by turning on the lamp, or by
opening the blinds, but only in case there is enough light
outside: “room1.presence > 0 ⇒ room1.lamp =
on ∨ outsidelux > 1000 ∧ room1.blinds = open”.
Sensors here are room1.presence and outsidelux. So,
by putting it into CNF, splitting on two different rules,
putting the sensors to the antecedent, and removing the
negation from atomic predicates we obtain the following
two rules: “room1.presence > 0 ⇒ room1.lamp =
on ∨ room1.blinds = open” and “room1.presence >
0 ∧ outsidelux ≤ 1000⇒ room1.lamp = on”.

If someone is present in the room, the first rule will be
“active” and the system will need to either turn on the lamp
or open the blinds. In practice, since optimization CSP is
used, if both choices are not restricted the system will choose
to open the blinds as more energy efficient choice. But if
the outside light level is sufficiently small, the second rule
will also become active, which means the only choice left
will be to turn on the lamp, as it will satisfy both rules.

V. DYNAMIC DEPENDENCY GRAPH

The environment size for pervasive smart buildings may
become considerably large, easily reaching hundreds of
variables. One of the goals of the RME component is to
ensure that such environments can be handled in real time,
thus rechecking all variables after every event registered by
one of the sensors is definitely a non-practical solution. It is
better to recheck only parts of the environment, which are
actually affected by a change. This is, however, not always a
straightforward task. The dynamic dependency mechanism,
which is realised via the use of the Dependency Graph
is specifically the mechanism designed to keep the actual
dependencies between the variables, based on the context
information, and only invoke re-optimization tasks for the
smallest subsets of the variables which are actually affected.

As shown in Section IV, after performing rule transfor-
mations, we obtain an internal set of rules R, where every
rule r ∈ R is in a form Fs(S) ⇒ Fa(A), specifically∧

s∈S(P (s)) ⇒
∨

a∈A(P (a)). First of all, sensor variables
should be removed from the CSP model. At every moment
of time sensor variables have a particular valuation, based
on the context environment information, and represented
by a set of rules Rs: s = ds, ∀s ∈ S. So, while the
sensor values influence the valuation of actuators, the sensors
themselves are not decision variables, as only a single value
is applicable to them, and we know this value in advance.
The rule form Fs(S) ⇒ Fa(A) helps to construct an
equivalent CSP model that does not contain sensor variables.
For this, we define an active property of rules:

Definition 1 (Active/inactive rule). A rule r = (F r
s (S) ⇒

F r
a (A)) is active in the current state of the environment, i.e.

with a given valuation of sensors Rs, if the antecedent part
of the rule F r

a (A) valuates to true, and inactive otherwise.

Let R∗ ⊆ R represent an active subset of rules R. If the
rule is inactive, it poses no constraint for the actuator values,
as the full rule is already satisfied regardless of them. So the
rule may be removed from the CSP model at this moment.
The activeness of a rule changes with time and sensor values.

Using the notion of rule activeness, we change the previ-
ous CSP definition:

CSP (V,Ro

⋃
Rs) ≡ CSP (A,FR

A),

where FR
A = {F r

a (A)}, ∀F r
a (A) of r ∈ R∗

Not only such definition removes all sensor variables from
every CSP task, but also many original rules are removed,
leaving only those that are relevant to the current situation
and state of the environment. Given the nature of smart
environment rules, it may be a small subset of original rules.

The next step in transforming the task definition is to find
sets of dependent variables. For this, we formally define
dependency of variables and rules:

Let X(Vx) represent the set of full Cartesian product of
values for a variable set Vx: d(vx1)×d(vx2)× Let r(x)
for r ∈ R, x ∈ X(A) identify the result of evaluation (true
or false) of the consequent actuator part Fa(A) of a rule
r with values in valuation x. If Br = {ar1, ar2, . . .} is a
subset of actuators Br ⊆ A, then let NBr be a complement
subset: NBr = A\Br.

Definition 2 (Dependency). The rule r ∈ R is said to
introduce a dependency over a subset of actuator variables
Br = {ar1, ar2, . . .} (or, alternatively, a rule r depends on
variables ar1, ar2, . . .), iff:

1) ∀x ∈ X(NBr) : ∃w1, w2 ∈ X(Br) s.t.: r(x×w1) 6=
r(x× w2)

2) @anb ∈ NBr s.t. ∃d1, d2 ∈ d(anb), ∀x ∈
X(NBr\anb), ∀w ∈ X(Br) : r(d1 × w × x) 6=
r(d2 × w × x)

3) @ab ∈ Br s.t. ∀d1, d2 ∈ d(ab), ∀w ∈ X(Br\ab),
∀x ∈ X(NBr): r(d1 × w × x) = r(d2 × w × x)

The first part ensures that the result of a rule evaluation
will indeed change with different valuations of variables in
Br. The second part ensures that the set Br is complete,
i.e. there is no variable outside of this set, s.t. changing a
value of this variable will still result in a change of a rule
evaluation result. The third part ensures that Br is minimal,
i.e. there is no variable in this set, which does not influence
the evaluation result irrespectively of its value. We use the
dependency relation to find subsets of dependent variables
and rules. To do it, we introduce a dependency graph:

Definition 3 (Dependency graph). The dependency graph
for a set of actuators A and a ruleset R is a bipartite graph
G = 〈A,R,E〉, where A and R are two sets of vertices, and
E ⊆ A×R is a set of edges, (a, r) ∈ E iff the consequent
part Fa(A) of the rule r depends on a.

(a) All rules are active (b) r1 is inactive (c) r3–r5 are inactive

Figure 1. Dependency graphs

Figure 1a shows a dependency graph example. Two dis-
connected subgraphs in the figure represent a static inde-
pendency, i.e. there is no rule that may potentially make
the variables from different connected subgraphs dependent
on each other. Every rule and every variable are a part
of only a single subgraph, and it is clear (see Lemma 1
for proof) that instead of having a single big CSP with
all variables and rules combined, it is possible to “divide
and conquer” by creating several smaller CSPs for every
independent subgraph.

But most of the division benefits are gained not from
static, but from dynamic independency, which exists when
there are no active rules that make the variables mutually
dependent. This dependency changes over time and with
different sensor values, so two variables may be dynamically
dependent at one moment, and independent at the next one.

Definition 4 (Active subgraph). At a certain moment of
time, an active subgraph of the dependency graph G is
a connected subgraph of G that consists only of active
vertices.

Examples of active subgraphs are shown in Figures 1b,1c.
By using this notion, we show that our solution to the
DCSP of smart environments is globally optimal even with
partial environment rechecking. First, we prove a lemma that
smaller-sized CSPs for connected active subgraphs can be
solved independently. Then, we prove the main theorem that
at every subsequent step it is possible to only recheck those
subgraphs that changed their structure.

Lemma 1. For any set of solutions xi ∈ X(Ai) for all
connected active subgraphs Gi ⊂ G, Gi = 〈Ai, R

∗
i , E〉 s.t.⋃

i(Gi) = G,
⋃

i(Ai) = A,
⋃

i(Ri) = R∗, their combina-
tion x =

⋃
i(xi) is a solution of the full CSP (A,FR

A), ∀r ∈
R∗. And vice versa, if x ∈ X(A) is a solution to the full CSP,
when split into subsets of variables per active subgraph,
these values will be a solution to smaller CSPs for connected
active subgraphs: CSP (A,FR

A) ≡
⋃

i CSP (Ai, F
Ri

Ai
)

Proof: We split the proof into two parts. First we
prove that if x ∈ X(A) is a solution to CSP (A,FR

A),
then all xi which are parts of the x that contain vari-
ables from active subgraphs Gi, are solutions to respective
CSP (Ai, F

Ri

Ai
). Then we prove that if ∀i: xi is a solution

to the CSP (Ai, F
Ri

Ai
) of the subgraph Gi, then x =

⋃
i(xi)

is a solution to the full CSP (A,FR
A).

1. Assume x ∈ X(A) is a solution to CSP (A,FR
A). Then

x must also be a solution for a CSP (A,FRi

A), ∀i, since these
CSPs contain same variables A, but only a subset of original
constraints Ri ⊆ R∗, therefore are less restrictive. From
Definition 2 and Definition 4 it follows that the satisfaction
of constraints Ri from active subgraph Gi depends only on
variables from subset Ai, irrespectively of values of variables
A\Ai, thus the rules Ri are satisfied by valuation of xi ∈
X(Ai), xi ⊆ x, therefore the smaller CSP (Ai, F

Ri

Ai
) must

also be satisfied ∀i.
2. Assume that ∀i: xi ∈ X(Ai) is a solution to

CSP (Ai, F
Ri

Ai
). If we add new variables A\Ai (to the total

set of A) for every such CSP to obtain CSP (A,FRi

A), it
will be satisfied for any valuation of new variables, since
by Definitions 2 and 4 no constraint out of Ri changes
its satisfaction status no matter the values of a ∈ A\Ai.
Therefore we can use valuation x = x1×x2× . . . to satisfy
all CSP (A,FRi

A). So, the valuation x satisfies all rules in
every set Ri. Therefore it must satisfy all rules in a combined
set R∗ =

⋃
i Ri, ∀i, which means the valuation x must be

a solution to the CSP (A,FR
A).

Since every cost function only depends on a single vari-
able, if x is optimal for CSP (A,FR

A), all xi ⊆ x must
also be optimal for respective smaller CSPs. Otherwise, if
a valuation x′i is better for CSP (Ai, F

Ri

Ai
), following the

chain of reasoning from part 2 of the proof, we arrive to
conclusion that valuation x′ = x\xi ∪ x′i must also be a
solution to CSP (A,FR

A), and it must be better than x, which
contradicts the premise. And vice versa, if all independent
subsets xi are optimal, the full set x must also be optimal.

During the operation of the smart environment system,
new sensor readings arrive as events. The change in a sensor
value may potentially cause some rules to change their
activeness status. The check takes constant time for every
rule, as the form

∧
s∈S(P (s))⇒

∨
a∈A(P (a)) ensures that

only a single atomic predicate P (s) for a sensor s may
change, and needs rechecking. Only the change in activeness
status affects the actuators, and only a small percentage
of new sensor readings actually change the activeness of
a rule, which saves the system from a lot of unnecessary
CSP solution invocations. The change of activeness status
changes the structure of active subgraphs around the rule.
Either a single subgraph has one more (one less) constraint,
or two or more subgraphs may join into one (one subgraph
split into two or more). We now prove the main theorem:

Theorem 1. For every event in the system, only active
subgraphs that changed their structure must be rechecked
for the whole valuation of actuators to remain satisfied and
optimal.

Proof: Let xt be the optimal solution found for the
CSP (A,FRt

A) at time t, with active rules Rt. Let Gt

represent a set of active subgraphs Gt
i at time t. Let xt+1,

CSP (A,FRt+1

A), Rt+1, Gt+1 represent same notions for the
time t+ 1.

We split xt to a set of valuations {xt
i} that correspond to

active subgraphs Gt
i. As proven in Lemma 1, every xt

i is a
solution to a corresponding CSP (Ai, F

Rt

Ai
).

Let a sensor change at time t + 1 make ruleset Rt+1
−

inactive and ruleset Rt+1
+ active. The total active ruleset at

time t + 1 is thus Rt+1 = Rt\Rt+1
− ∪ Rt+1

+ , and the rules
Rconst = Rt\Rt+1

− are active at both times t and t+ 1.
Since variable vertices are always active, active subgraphs

that consist only of rules in Rconst are defined by Gconst

and are the same for both times: ∀Gi s.t. Ri ⊆ Rconst:
Gt

i = 〈Ai, Ri, E〉 = Gt+1
i . Since we know that xt

i is a
solution for Gt

i, it must also be a solution for Gt+1
i . Let us

denote the set of valuations for Gconst as xconst.
Let xt+1

nc represent (newly found) solutions for all active
subgraphs Gt+1\Gconst. As proven in Lemma 1, the com-
bined xt+1 = xconst × xt+1

nc must be a solution for the
CSP (A,FRt+1

A). Therefore it is proven that it is possible to
reuse solutions xconst from Gconst in a global solution.

In the case of a usual CSP instead of an optimization
CSP, i.e. if the cost of the solution is not relevant and any
solution that satisfies the rules is equally good, the dynamic
rechecking can be made even smaller, as the rechecking
will be required only if the constraint is added (i.e. the rule
becomes active), but not if the rule becomes inactive, as in
this case the previous solution is still valid.

Algorithm 1 presents the reaction of the system to a new
sensor reading s = ds. For all rules from a ruleset R that
depend on s, the system checks the status of the rule, and if
it is changed, the rule is marked accordingly. While exists
a changed rule r, the system finds a set of adjacent active
subgraphs for this rule. If rule changed to inactive there may
be more that one. The optimization CSP is invoked for every
such subgraph. For all actuators that changed their state an
action is created and is sent further to be executed. Finally,
the system removes changed status from all rules in checked
subgraphs and the original rule.

VI. EVALUATION

A. Architecture

Figure 2 shows the Rule Maintenance Engine architecture.
The Web UI presents all information about the RME

system and its decisions to users. The RME itself runs as
a back-end server, and provides a REST interface to show
and modify the data. The front-end consists of a client UI
that runs on the Play Framework [13] and an HTML5-based
interface for context information and manual control via mo-
bile devices, such as Android-based smartphones and tablets.
The REST interface can also be used by other applications
to make modifications to the system programmatically.

The Repository contains information about the devices,
services or virtual variables, and the latest values of the
sensors. Information is loaded at startup, so it is immediately

Algorithm 1 Event processing
1: function processChange (s,ds)
2: for all rule← R s.t. rule.Fs contains s do
3: Update rule status
4: Mark rule as changed if status is changed
5: end for
6: while ∃rule ∈ R s.t. rule is changed do
7: subGraphs← findActiveSubGraphs(rule)
8: for all sg ← subGraphs do
9: newstate← OptimizeCSP (sg)

10: for all vc ∈ sg.vars s.t. vc 6= newstate.vc do
11: createAction(vc,newstate.vc)
12: end for
13: Unmark changed status from all r ∈ sg.rules
14: end for
15: Unmark changed status from rule, if still marked
16: end while

Figure 2. Rule Maintenance Engine Architecture

possible to make the initial check of the environment and
issue any state goals. This also makes the RME tolerant
to failures and crashes, as it automatically returns to its
latest state after restart. Users can override any part of
the environment configuration via the Web UI. Addition or
modification of devices can be done dynamically, without
the need to restart the system.

The Rule Manager loads rules at startup. A user can
switch between sets, or modify rules via the dedicated Web
UI. Rules are checked for correctness and consistency, and
transformed to the internal constraint form. The transforma-
tion is done once when the rule is modified, and it may result
in several internal constraints from a single initial rule.

Devices and rules are combined in the Dependency Graph

Manager (DG). It contains the current environment state;
the commands, issued to the actuators, and their execution
status; warnings about currently unsatisfiable rules; which
manual goals were set by system’s users previously, etc.
Through the associated dashboard of the Web UI the users
can keep track of the current system’s status.

Sensors are the main source of events. The Context
component collects raw sensor data, processes it, performs
activity recognition [14], [15], and sends results to the
RME. For the RME effectively both low-level sensors and
high-level activities are represented through environment
variables. Since there can be many events per second, the
scalable and highly reliable messaging system is used to
transfer this information. For the GreenerBuildings project
the RabbitMQ [16] messaging framework is used. The RME
subscribes to the updates it is interested in, and receives
them when they are published by the Context. With every
event the DG rechecks the affected parts of the environment
and invokes the Solver, which finds the new optimal states
of actuators. The search problem for the Solver is repre-
sented as an optimization CSP, and currently the CHOCO2
Solver [17] library is used for the task. Events are also
generated by the User Control UI, where users may set their
goals manually. When an actuator should change its state, the
goal is generated by the DG and is sent further for execution.

B. Living Lab

The system was evaluated in the living lab constructed
on the premises of the Technical University of Eindhoven,
the Netherlands. It was installed in December 2012 and has
been running on a full-time basis at the time of writing
this paper (June 2013). The living lab features two large
spaces: a working room with four working desks, and a
meeting room, with a meeting table and a presentation area.
The sensors include the Plugwise power meters [18], CO2

and humidity, passive infrared (PIR) motion, temperature,
light, ultrasound (USR), acoustic, etc. The actuators include
Plugwise switches for devices such as projectors and lamps,
dimmers for fine-grained control of ceiling lamps’ light lev-
els, motor controllers for blinds heights and angles, HVAC
system. In total there are 135 variables. Among them are 82
raw sensors, 26 recognized activity sensors, 27 actuators.

Rules change over time, with the original preset having
39 rules that are transformed as described in Section IV
into 62 internal constraints. The rules are designed for
different adaptation scopes, which include the adaptation
for natural and artificial lighting, different activity types in
a meeting room, rules for working space personalization,
heating system, etc. Control UI allows users to override
system’s decisions, and set any actuator manually.

The operation of the living lab showed that our module
solves all resulting CSPs in a matter of milliseconds, return-
ing real-time commands to actuators. The next step of the
project is to extend the system to more rooms, and the whole

(a) CSP vs. DG, log scale, clusterization values of 0.9, 0.6, 0.3, 0.0

(b) DG-only close-up

Figure 3. Average solution times of CSP and DG representations

building, so the next section discusses the performance and
scalability potential of our solution in depth.

C. Performance

To evaluate the effectiveness of our solution with greater
flexibility, we also made performance experiments that were
running on Windows 7, Intel Core2Duo E7400 @2.8GHz,
4 Gb RAM, Java7 machine. As a baseline, we used random
instances with boolean variables. Note that any instance
with arbitrary sizes of domains can be converted into an
equivalent instance with boolean variables, one per each
domain value. Every instance has half of its variables as
sensors, and half as actuators. For every set of parameters
we generate 50 different instances. Every instance runs for
100 sensor change events and for every event the time to find
a solution is recorded, and the average time across these runs
is presented in the figures. Every rule is a random constraint
between two sensors and two actuators, and the number of
rules equals to the 120% of the number of variables.

We also analyzed the impact of clusterization on the
performance of the DG solution. In smart environments most
variables are naturally split into clusters of highly-dependent
variables, e.g. by location, with loose dependency between
clusters. Thus we introduce clusters of variables in our
instances, with varying degrees of clusterization. E.g., for
a degree of 0.6, 60% of rules will connect variables within
a cluster, and remaining rules connect any variables, also
across clusters. We used clusterization values of 0.9 (very
distinctly defined clusters), 0.6, 0.3 and 0.0 (no clusters,
every rule connects variables fully randomly). The number
of clusters is

√
|V |, so an instance with 40 variables has 6

clusters with 6-7 variables each, while an instance with 400
variables has 20 clusters with 20 variables each.

Table I
DETAILED DATA FROM A PART OF A RANDOM INSTANCE RUN, 100 VARIABLES, 0.0 CLUSTERIZATION

Event 1 2 3 4 5 6 7 8 9 10 11 12
CSP Time 45.68 41.38 71.06 36.05 25.24 32.93 34.02 66.47 29.42 31.18 31.04 56.98

DG Time 8.71 12.11 8.47 10.62 7.86 6.71 5.69 4.19 8.33 7.83 4.88 0.08
Size(s) 1;21 22;1;1;8 1;1;20 26;2 3;25 25;5 1;26 1;1;3 1;1;23;1 22;1;2;1 2;20 -

Figure 3 compares solution times using a natural CSP def-
inition (as given in Section III), and using the Dependency
Graph data structure. The time of rule activeness rechecking
and graph traversals is included into the resulting time for
the DG, i.e. results include all overhead, associated with
using the DG data structure. It can be seen that for all cases
DG severely outperforms the natural CSP definition, staying
at around 10 milliseconds time for over 200 variables, while
CSP already goes to over 1000 milliseconds solution time for
such cases. The clusterization parameter has no influence on
CSP solution time, which is expected, since CSP takes the
full environment into account. However, for DG it is shown,
that the bigger the clusterization is, the lower the solution
time will be, which also means much bigger scalability
potential for implementing the solution in smart buildings.

For better insight we included the detailed data from one
of the runs of the system on an instance of 100 variables
with 0.0 clusterization in Table I. Every event corresponds
to a single sensor change. The size of the CSP definition
is always the same (100 variables, among which 50 are
decision variables, i.e. actuators), while the DG size varies,
depending on the current size of active subgraphs. As every
sensor can be a part of several rules, it is customary that
a single sensor change triggers re-optimization of several
subgraphs. E.g. event 6 triggers two DG tasks, one with 25
variables, and the other with 5 variables. Event 12 has no
impact on active subgraphs, so no re-optimization occurs.

VII. CONCLUSIONS

We presented a reasoning mechanism for smart envi-
ronments which models the environment as a dynamic
constraint satisfaction problem. We showed how the domain
information can be used effectively to reduce the size of
every subsequent CSP by reusing parts of the earlier solu-
tion. We presented the dependency graph, which effectively
captures the dependencies between actuators, and allows
to find dynamically independent subsets of variables. We
proved that the partial rechecking of the environment still
retains the global satisfiability and optimality of the solution.
The system is fully implemented and evaluated as a part
of the GreenerBuildings project solution for smart envi-
ronments automation. Experiments show big performance
improvement and scalability potential of the DG approach.

ACKNOWLEDGMENT

The research is supported by the EU project Greener-
Buildings, contract FP7-258888, and by the Dutch NWO

Smart Energy Systems program, contract 647.000.004.
We would like to thank Marco Aiello and Krzysztof Apt

for useful comments about this work.

REFERENCES

[1] “GreenerBuildings,” http://www.greenerbuildings.eu, 2013.
[2] G. Verfaillie and T. Schiex, “Solution reuse in dynamic

constraint satisfaction problems,” in Proc. of the National
Conference on Artificial Intelligence, 1994, pp. 307–312.

[3] R. Dechter and A. Dechter, Belief maintenance in dynamic
constraint networks. University of California, Computer
Science Department, 1988.

[4] C. Bessiere, “Arc-consistency in dynamic constraint satisfac-
tion problems,” in Proceedings AAAI’91, 1991.

[5] R. Debruyne, “Arc-consistency in dynamic CSPs is no more
prohibitive,” in IEEE Int. Conf. Tools with Artificial Intelli-
gence (ICTAI), 1996, pp. 299–306.

[6] Y. Ran, N. Roos, and J. van den Herik, “Approaches to
find a near-minimal change solution for dynamic CSPs,”
in Fourth international workshop on integration of AI and
OR techniques in constraint programming for combinatorial
optimisation problems, 2002, pp. 373–387.

[7] T. Schiex and G. Verfaillie, “Nogood recording for static
and dynamic constraint satisfaction problems,” Int. Journal
of Artificial Intelligence Tools, vol. 3-2, pp. 187–207, 1994.

[8] G. Verfaillie and N. Jussien, “Constraint solving in uncertain
and dynamic environments: A survey,” Constraints, vol. 10,
no. 3, pp. 253–281, 2005.

[9] S. Mittal and B. Falkenhainer, “Dynamic constraint satisfac-
tion,” in Nat. Conf. on Artificial Intelligence, 1990, pp. 25–32.

[10] F. Pecora and A. Cesta, “Dcop for smart homes: A case
study,” Computational Intelligence, vol. 23, no. 4, pp. 395–
419, 2007.

[11] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello,
“Coordinating the web of services for a smart home,” ACM
Transactions on the Web, 2012.

[12] V. Degeler and A. Lazovik, “Cost-efficient context-aware rule
maintenance,” in IEEE Int. Conf. Pervasive Computing and
Communications (PERCOM) Workshops, 2012, pp. 608–612.

[13] “Play Framework,” http://www.playframework.com, 2013.
[14] O. Amft and C. Lombriser, “Modelling of distributed activity

recognition in the home environment,” in Int. Conf. Engineer-
ing in Medicine and Biology Society (EMBC). IEEE, 2011,
pp. 1781–1784.

[15] F. Wahl, M. Milenkovic, and O. Amft, “A distributed PIR-
based approach for estimating people count in office environ-
ments,” in Int. Conf. Computational Science and Engineering
(CSE). IEEE, 2012, pp. 640–647.

[16] A. Videla and J. J. Williams, RabbitMQ in action. Manning,
2012.

[17] N. Jussien, G. Rochart, X. Lorca et al., “Choco: an open
source java constraint programming library,” in CPAIOR’08
Workshop on Open-Source Software for Integer and Contraint
Programming (OSSICP’08), 2008, pp. 1–10.

[18] “Plugwise,” http://www.plugwise.com, 2013.

