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A scalable, reactive and easy to evolve reasoning mechanism is essential for the suc-
cess of automated smart environments, augmented with a large number of sensors and

actuators. While constraint satisfaction problem (CSP) model is applicable for modelling

decision making in such environments, the straightforward representation of the model
as a CSP leads to a great number of excessive calculations. In this paper, we propose

a method of modelling the task as a Dynamic CSP in a way that avoids unnecessary

recalculations with new events in the environment. We present a Dependency Graph
data structure, which not only allows to reduce CSP search space for every consecu-
tive sensor event by detecting only affected parts of the environment, but also allows to
give enough information to users of the system to specify the exact reasons of system’s

decisions, even with a large number of constraints. We formally prove that partial recal-

culation of affected parts still keeps the full environment globally satisfied and globally
optimal. The evaluation of the system in the living lab showed real-time responses for

all events. Additional simulated performance experiments showed that the Dependency

Graph approach consistently outperforms the straightforward CSP representation. The
experiments also showed that the clusterization of the environment has a noticeable effect

on the performance, with highly clusterized environments requiring less computations.

1. Introduction

A smart office is a building that integrates and controls different appliances (PCs,

lights, thermostats) to improve the productivity and comfort of its occupants. What

even several years ago seemed to be a distant future, now quickly becomes a reality:

modern office buildings contain thousands of smart devices that can be remotely

controlled and potentially adjusted in accordance with dynamic context information
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received from the installed sensors. While one of the goals of such systems is to im-

prove the quality of occupants’ working conditions, the main driving factor for the

building facility managers is to make the building more sustainable. Unfortunately,

current building management systems often fail to reduce and optimize the unnec-

essary energy consumption while maintaining (and improving) the user comfort in

the same time. This is caused by the difficulty of coping with the dynamic changes

caused by the user’s interaction with the environment, changing user preferences

(often depending on the current work-related goals), and the dynamic environment

itself (with new devices and sensors being installed and/or replaced). At the same

time, in any smart environment the autonomy and reasoning power should be coun-

terbalanced by the ability of users to fully understand the reasons of the system’s

automated operations. Users should have the ability to fully control the system’s

decisions, and be able to adapt the system’s reasoning to fit their goals and desires

at any moment of time. Therefore, flexible and adaptable reasoning mechanisms are

essential for environments automation.

Modern building automation systems typically represent the decision logic via

hard-coded rules, where each concrete sensor input corresponds to the output that

is hard-wired with a set of actuators. For example, a signal from the presence sensor

may result in turning on the light in the room, while no signal for a certain period

of time will result in turning the light off. However, this approach has a number of

drawbacks. Firstly, with an increasing amount of devices it is very hard to maintain

the integrity of the rules. Secondly, as the rules are often hard-coded and depend

on concrete sensor and device installations, it is difficult to maintain and upgrade

the system, not mentioning aiming at energy saving and sustainability.

As a logical step, instead of hard-coded if-then rules, it is desirable to model the

system behavior via a set of generic rules (or constraints) that represent possible

global system states and then allow the system to pick one of the possible solu-

tions satisfying given constraints. The selected solution may be then chosen based

on some optimization criteria, thus forming an optimization problem that can be

informally defined as follows: given sensor inputs (representing the current state

of the system), a set of constraints (representing user comfort preferences), and a

desired optimization criteria (e.g., total energy consumption), modify the state of

the controllable actuators to satisfy the given constraints with the best value of the

cost function associated with the given optimization criteria.

Our approach, implemented in the GreenerBuildingsa European FP7 project,1

is to specify scenarios of the building’s operations via sets of logical rules. The

predefined sets of rules for standard behavior may always be modified or fully over-

ridden on global or local levels by facility managers or particular users. The rules

combine context information about the environment with the desired behavior of

actuators, and they must at all times be satisfied whenever it is possible or be able

to communicate failure to relevant users when impossible.

ahttp://www.greenerbuildings.eu/
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This behavior can be represented as a constraint satisfaction problem (CSP)

model. However, the resulting optimization problem is computationally complex

given the expected number of variables (up to several thousands for modern build-

ings), which makes it unfeasible to apply as-is for a real-time building optimization.

The model though can be represented as Dynamic CSP (DCSP) due to the neces-

sity to solve the problem over and over again, every time with small changes (due

to changing environmental context) from the previous task.2 If costs are involved,

e.g. the desire to find the most energy efficient way to satisfy current set of rules,

the usual CSP task may need to be solved as an optimization CSP.

In this paper we present an approach based on the dynamic constraint satisfac-

tion that has been implemented within the GreenerBuildings project. The contri-

butions of this paper are several. First of all, we explain why the straightforward

encoding of the problem to the (D)CSP task does not bring the maximum efficiency,

and how the specific structure of the smart environments domain can be exploited in

order to make CSP models smaller and every subsequent CSP solution recheck only

parts of the environment. In particular, the existence of context variables (infor-

mation from sensors) and controllable actuators as well as the uneven dependency

of variables are exploited. By uneven dependency we mean the existence of highly

dependent subsets of variables (for example, devices that are part of a common area

within a single room) with many interconnecting rules, which have very loose or no

dependency on another subset of variables (e.g. devices from a different room).

The main contribution involves the formulation of the dependency graph data

structure, which makes it possible to split CSP into dynamically independent sub-

tasks, and to find only the affected parts of the problem every time a new event

arrives to the system, which severely reduces the size and complexity of the CSP to

be solved at every subsequent step. We also present specific transformation of rules

into a form which makes the dependency graph easy to calculate. It is important to

note though that splitting the original CSP into independent subtasks during the

modelling process is not possible to the full extent, as any part of the CSP may

potentially depend on any variable or rule thus preventing the possibility to decom-

pose the problem in advance. However, we demonstrate that given a CSP problem

with a structure typical for office automation, it is often possible to decompose it

into a set of dynamically forming independent subtasks. Additionally, we show that

by doing this it is possible to give specific feedback to people that manage the en-

vironment about the exact causes of certain actions, or parts of the rules that are

inconsistent.

Following our initial publications on this topic,3,4 in this paper we formally

define a context-aware rule maintenance problem as DCSP, prove the correctness

of the solution, and present the implementation of the system and its evaluation in

the living lab and with performance experiments.

The remainder of the paper is organized as follows. Section 2 presents the related

work. Section 3 provides an initial description of the system and defines the structure
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of rules. Section 4 formalizes the environment. Section 5 presents the transformation

of rules. Section 6 presents the Dependency Graph data structure that is used to

reduce the constraint problem space. The feedback mechanism of the Dependency

Graph is explained in Section 7. Section 8 evaluates the solution. Finally, Section 9

provides conclusions.

2. Related work

2.1. Constraint Satisfaction in Smart Environments

In the field of smart environments several studies propose to use constraint satisfac-

tion techniques to solve reasoning problems. For example, multi-agent coordination

in smart homes is modelled as distributed constraint optimization problem by Pec-

ora and Cesta.5 The coordination is fully distributed, i.e. every agent relies only

on communication with other agents and manages one or more variables. In this

scenario constraints model the desired minimum-cost concurrent behavior of agents.

On the other hand, Petersen et al. propose a solution with centralized com-

mand post for mission-critical environments, such as search and rescue operations

with robot teams.6 They present a method for efficient task-assignment, where con-

straints that are added by humans via a dedicated interface are combined with

physical constraints of the environment, and are solved by a modern Mixed Integer

Linear Programming (MILP) solver.

Koes et al. present a first order logic constraint language for such search and

rescue domains for robots.7 They also introduce a goal-oriented Constraint Opti-

mization Coordination Architecture (COCOA), which aims to transform the orig-

inal problem by formulating it as a constraint optimization problem. The solution

to this problem will generate a schedule that can be executed by a robot with some

level of abstraction.

Cesta et al. describe a problem solving environment that deals with com-

plex scheduling problems, which are represented as constraints.8 They present O-

OSCAR, a CSP-based object-oriented scheduling framework.

CSP-based AI planner is used by Kaldeli et al. to compose services for smart

home scenarios.9,10 The planner allows the expression of extended goals and utilizes

the latest advancements in the CSP field to make the search faster using enhanced

inference techniques.

2.2. Dynamic Constraint Satisfaction

The formulation of the dynamic constraint satisfaction problem (DCSP) as a set of

successive static CSPs with addition or removal of constraints was first proposed

by Dechter and Dechter,11 and subsequently elaborated in many other works.

Bessiere investigated the application of arc-consistency algorithms for Dynamic

CSPs.12 Bessiere considers binary constraints, i.e. those that involve only two vari-

ables. The original arc-consistency algorithms do not solve static CSP completely,
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but eliminate all values that are mutually inconsistent and are definitely not part

of the solution, but that otherwise would be discovered by backtracking procedures

over and over.13,14 For the Dynamic CSP the original arc-consistency cannot be

reused if a constraint is relaxed, because the reasons for marking values inconsis-

tent are not being tracked, and inconsistency marking cannot be removed without

fully rerunning the algorithm. Bessiere therefore proposed an extension to the algo-

rithm to track the original reasons for marking inconsistent values, which allows to

make incremental changes to arc-consistency values when constraints are changed.

An improved algorithm with lower space complexity is proposed in 15.

Algorithms based on nogood recording that may be used in both static and dy-

namic CSPs are proposed by Schiex and Verfaillie.16,2 Similarly to arc-consistency,

a nogood is a pair of value assignments that cannot be contained in any solution of

the CSP. A set of nogoods is built during a backtrack search.

Roos, Ran and van den Herik propose an algorithm to solve each CSP in a se-

quence of consecutive CSPs by using previous solutions.17 To avoid big differences in

successive solutions, which are often undesirable in practice, they propose a repair-

based algorithm RB-AC, which performs a local search in the neighborhood of an

infringed solution to find a new nearby solution which is the most similar to the

old one. The results however show that repairing a solution may be much harder

than creating a new one from scratch if several constraints are changed simultane-

ously. Therefore authors later proposed an approximate algorithm that reduces the

time complexity of a repair by relaxing the optimality requirement with respect to

number of changes made.18

An alternative definition of Dynamic Constraint Satisfaction Problem was for-

mulated by Mittal and Falkenhainer, where DCSP defines a single CSP with dif-

ferent additional sets of variables and constraints depending on variable values.19

In this paper we use a more commonly accepted Dechter and Dechter’s definition,

when referring to the DCSP.11 Verfaillie and Jussien present a comprehensive survey

of the DCSP related research.20

3. Rule Satisfaction in Smart Environments

Smart homes, and in general other types of smart environments, can be defined by

several important characteristics. The most important is undoubtedly the ability to

be context-aware, to sense the physical surroundings and to understand the context

of the current situation. Also, smart environments should be able to reason using

this information and to deduce valuable knowledge. And finally, they should have

the ability to act intelligently in response to changing situations, according to certain

goal criteria. Smart environments are often ubiquitous, which means their sensing

and acting capabilities come from devices that are embedded in the physical world.

There are several criteria, according to which the intelligence of smart environ-

ments can be judged. Most smart environments are designed to increase the comfort

and quality of life of their users, e.g. inhabitants of a building. The automation of
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surrounding devices usually goes towards this goal, for example by understanding

current user goals and problems and performing actions directed towards solving

them. In most of the cases, however, this should not lead to situations where users

are unable to override the system’s decisions, as this not only severely decreases

their comfort levels, but also can be dangerous in some unaccounted for situations.

It is important as well that users can anticipate to a certain extent the actions of the

smart environment and understand why certain actions were performed. Seemingly

erratic and illogical actions lead to lesser trust of users to the system and its de-

creased usage. Therefore the ability of users to control the smart environment and

to influence its reasoning in a particular way is also an important criterion. Many

smart environments are designed particularly to help elderly or disabled people,

thus supporting a healthy ageing process. And, of course, increasing energy prices

and adoption of renewable energy sources bring forth the topic of energy awareness

and energy savings in smart environments.

The GreenerBuildings project aims to increase the overall users’ comfort by

adapting to their needs. Usually there are different ways to satisfy user requirements,

so the additional goal of the project is to assure the minimum energy consumption

of the building without sacrificing user comfort. The reasoning is handled by the

Rule Maintenance Engine (RME) component. Main RME goals can be defined as

follows:

Given a set of user-defined rules of the building’s behavior and information about

the current environment state, the Rule Maintenance Engine must ensure that:

(1) The rules are satisfied and adhered to, whenever it is possible.

(2) If there are rules which cannot be satisfied at a given moment, users must be

presented with sufficient information to identify the cause.

(3) For any actuator at any given moment users must be given information on exact

reasons of performed actuations. Users must be able to override the state of the

actuator.

(4) While satisfying all rules, the energy consumption of the building should be

minimal.

(5) Decisions should be made in real-time and be scalable with respect to the envi-

ronment size.

In general, rules are entered to the system by its users. However, there are certain

“ready-made” presets of rules that users may use. The system gives the ability to

modify sets of rules or switch between different sets.

Rules describe the expected and desired behavior of the smart building. In gen-

eral there are two different types of rules. The RME system itself handles those

types equivalently, but for the users of the system they represent a difference be-

tween what is necessary and what is desirable.

The first type represents a dependency between variables. For example, a rule

desk1.monitor = active⇒ desk1.pc = on tells the system that it is not possible to

have a monitor in an active state if the PC, to which the monitor is connected, is off.
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The second example is ¬(room1.blinds1 = down∧ room1.window1 = open), which

represents a physical constraint that blinds can only be put into down position if

the window is closed.

The rules of the second type are in essence user preferences. They describe

the desired behavior of the system. For example, a rule room1.presence > 0 ⇒
room1.ceilinglamp = on∨room1.desklamp = on represents a desire to have a light

on in the room, if there are people inside.

The rules are defined as formulas in a predicate logic over finite domains. Every

atomic predicate represents a certain condition over a variable, and should result

in true or false. There are several available operations in predicates. The equality

represents that a variable should be equal to a given value for a predicate to be

true. For example: room313.dimmer1 = 0. Opposite to it, the inequation is used

to forbid a variable to be equal to a certain value, e.g. room313.dimmer1 6= 0. It

is also possible to use a set of values instead of a single value in both cases, e.g.

room313.dimmer1 ∈ {0; 10; 20} or room313.dimmer1 /∈ {0; 10; 20}. These opera-

tions are available for all types of variables. For ranged variables, i.e. integer or

real ones, it is also possible to use inequalities, i.e. greater (or equal) / less (or

equal) than. For example: room313.dimmer1>50; room313.dimmer2 ≤ 200. To

summarize, the rule with only a single atomic predicate is represented as:

P ::= (vi = d) | (vi 6= d) | (vi ∈ {di}) | (vi /∈ {di})
P ::= (vi < d) | (vi > d) | (vi ≤ d) | (vi ≥ d), vi ∈ R

Of course, atomic predicates can be combined together to form logical formulas of

any additional complexity, using the standard logical operators:

R ::= P | ¬R | R ∧R | R ∨R | R⇒ R | R⇔ R

4. Environment Definition as CSP

The environment 〈V,D〉 is defined by a set of context variables V = S
⋃
A;

S
⋂
A = ∅, where S = {s1, s2, ..., sn} is a set of uncontrollable variables, and

A = {a1, a2, ..., am} is a set of controllable variables. Uncontrollable variables S

represent sensors, they provide information about the environment, and cannot be

directly influenced by the system. They do not necessarily represent a physical sen-

sor. A variable can represent a combined value of several sensors, or a result of a

certain activity recognition task.

On the other hand, controllable variables A can be seen as actuators that can act

in the environment in an automated way, i.e. by receiving appropriate commands

from the system. We assume that it is possible to change the state of every actuator

independently from other actuators, and that it is possible to transform an actuator

from any state of its domain to any other state of its domain.

Every variable v ∈ V varies over a finite states domain d(v) with size kv,

which can be either a range of integer or real values, a boolean, or a set d(v) =

{dv1, dv2, ..., dvkv
}. Each variable v has a cost function cv(di), associated with its
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state domain d(v) that shows the cost of keeping the variable in this state. For

the GreenerBuildings project the cost is associated with the energy consumption of

corresponding devices.

The original set of rules Ro contains a set of logical formulas over variables

in V . Every rule r ∈ Ro can be represented as a constraint to the classical CSP

model, which corresponds to a subset of variables Vr = {vr1, vr2, . . .}, and represents

a subset Xr of a Cartesian product over their respective domain values d(vr1) ×
d(vr2)× . . ., which specifies the sets of values of those variables that are compatible

with each other. This subset can be trivially constructed by constructing the full

truth table for a set of variables Vr, and retaining only those values from a table,

for which the rule evaluates to true.

It is possible to use the original set of rules Ro as a set of constraints to the CSP

task, though we also need to add the knowledge about the current sensor values to

the problem definition, since we know their values from the context environment

information, and we cannot influence them directly. For every sensor s ∈ S, if its

current value is ds, one more rule s = ds is added to restrict the sensor. In this

case, the natural constraint satisfaction problem for the smart environment will be

defined as follows:

Find a valuation for a set of variables V = S
⋃
A which satisfies all constraints

C = Ro

⋃
Rs, where Ro is the original set of predefined rules, and Rs is a set of

sensor constraints for every sensor: ∀s ∈ S : s = ds, where ds is the current sensor

value of the sensor s, obtained from the context information. We will refer to this

CSP definition as CSP (V,Ro

⋃
Rs).

Such CSP representation, however, is very inefficient in practice with respect to

the amount of required computations. The reasons for this are the following:

• In order to keep the solution valid and up to date, the CSP task should be solved

for every new sensor change event. For the smart buildings with hundreds of

sensors several of such events arrive every second. Solving the CSP for the full

environment is a computationally heavy task, and doing it for every new sensor

change event can represent a big strain on resources. Such solution has a very

low scalability potential.

• Every sensor change affects only a small part of the environment, therefore solv-

ing from scratch every time produces a large amount of duplicate work. Using

dynamic constraint satisfaction techniques is more computationally efficient.

• In practice, many rules (constraints) for intelligent environments are only ap-

plicable for a particular situation, which may occur only a small percentage of

the time. For most of the time the constraints will not be applicable, however

they will still need to be added as a part of the CSP over and over again.

The classic definition of Dynamic Constraint Satisfaction Problem 11,12 defines

it as a set of successive CSPs, where every next CSP is created from the previous

one by adding or removing a variable or a constraint. Though in our case most of
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the changes to the environment do not involve direct addition or removal neither

of a variable, nor of a constraint, we can still represent a problem in such a way,

by representing a change of a sensor value s ∈ S from dsold to dsnew as removal of a

constraint s = dsold and addition of a constraint s = dsnew.

In the classic definition the domain remains of the same size. On the other hand,

our solution for dynamic constraint satisfaction of smart environments allows to

make the problem domain smaller for every subsequent CSP, by reusing dynamically

independent parts of the previous problem.

5. Rule Transformations

Users may enter rules in any form they like, but to make the automated processing

easier, the rules are transformed into a special uniform shape. Transformations are

done only once at the time of addition of a new rule by users (or after a rule was

modified), and should ensure that the least amount of processing is kept for the

real-time system’s operation. There are two reasons for transformations.

First of all, we split the rule into as many independent sub-rules as possible. For

example, a rule chair = occupied ⇒ pc = on ∧ lamp = on should be split into two

different rules: chair = occupied ⇒ pc = on and chair = occupied ⇒ lamp = on.

This will not change the overall rule satisfaction logic, as all the rules should be

satisfied, however, such splitting ensures that we do not register a false dependency

between two variables “pc” and “lamp”, as it can be seen that, at least if using only

this rule, they may be satisfied or not satisfied independently.

The second reason is that at the end we want all resulting rules to have a

form Fs(S) ⇒ Fa(A), i.e. some function of sensors implies a function of actuators.

The benefits we achieve with this are twofold. First of all, the sensors S cannot be

influenced by the system, thus they represent the situation that is given to us. There

is no possibility to directly influence the antecedent of the equation Fs(S); with the

given context in the current situation it is either satisfied or not. If it is not satisfied,

or let us rather say “the situation described in Fs(S) does not occur”, then we do

not need to do anything about the consequent of the equation, the Fa(A), which

contains actuators, as the full equation is already satisfied. The rule is then in the

“inactive” state, i.e. it is possible to skip it in the constraint satisfaction problem,

which can help us to severely reduce the search space and decrease dependencies.

If, on the other hand, the Fs(S) is met, i.e. results to true, then we must ensure

that the consequent, which contains actuators Fa(A), is satisfied. Thus the second

benefit. Since we can only control actuators, only actuator variables are meaningful

for the CSP search space. When we use such a form, we can only put Fa(A) part

of the formula to the CSP description, and only when we actually need it to be

satisfied.

Finally, to ensure the fastest processing the functions Fs(S) and Fa(A) are trans-

formed into the form
∧

s(P (S)) ⇒
∨

a(P (A)). Here P (S) and P (A) are atomic

predicates with respective variables. The form
∧

s(P (S)) ensures that with every
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new sensor reading s = ds it is possible to recheck only a single atomic predicate

P (s). The form
∨

a(P (A)) is the easiest for CSP solvers to work with.

It is always possible to transform any human-defined rule into such a form. The

actual transformation is done in the following steps. First of all, the original rule is

transformed into the CNF form. Every conjuncted clause (the disjunction) in the

CNF form is connected by ∧-clause and, since all rules must be satisfied, may be

regarded individually. Therefore every such clause will represent a single separate

rule in the resulting set, so often an original rule will result in several final rules.

Every resulting rule is a disjunction of atomic predicates (possibly negated). On the

second step it is transformed into an implication by taking those atomic predicates

that contain only sensors, and putting them (in negated form) into the antecedent

of the implication. This is possible due to a fact that for all predicate logic formu-

las the equivalence a ⇒ b ≡ ¬a ∨ b holds. The next step is not mandatory, and

is done only for convenience, in order to unify further representation and process-

ing of transformed rules: negation is removed from all negated atomic predicates

by flipping the operation. For example, the ¬(room1.dimmer1 > 100) becomes

room1.dimmer1 ≤ 100, and ¬(desk1.pc = on) becomes desk1.pc 6= on.

The overview algorithm of the transformation is presented in Algorithm 1. The

parseToCNF transformation is a standard one. For completeness, we present it

in Appendix of this paper. Note, that we do add the operation flipping for atomic

predicates, which is not the part of the standard CNF transformation.

Algorithm 1 Rule Transformation

1: function transformRules (Rorig)

2: R← ∅
3: for all rorig ← Rorig do

4: rcnf ← parseToCNF (rorig)

5: while r ← getNextDisjunction(rcnf ) do

6: Ps ← ∅; Pa ← ∅
7: while p← getNextAtomicPredicate(r) do

8: if p.v ∈ S then

9: Ps ← {Ps; flipOperation(p)}
10: else

11: Pa ← {Pa; p}
12: end if

13: end while

14: R← {R;
∧

s(Ps)⇒
∨

a(Pa)}
15: end while

16: end for

17: return R

For example, let us assume we have a rule that requires to have light in the room
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if there are people inside. Light can be achieved either by turning on the lamp, or

by opening the blinds, but only in case there is enough light outside:

room1.presence > 0 ⇒ room1.lamp = on ∨
outsidelux > 1000 ∧ room1.blinds = open

(1)

Sensors here are room1.presence and outsidelux. So, by putting it into CNF,

splitting it into two distinct rules, putting the sensors to the antecedent, and re-

moving the negation from atomic predicates we obtain the following two rules:

room1.presence > 0 ⇒ room1.lamp = on ∨ room1.blinds = open (2)

room1.presence > 0 ∧ outsidelux ≤ 1000⇒ room1.lamp = on (3)

If someone is present in the room, the first rule will be “active” and the system

will need to either turn on the lamp or open the blinds. In practice, since opti-

mization CSP is used, if both choices are not restricted the system will choose to

open the blinds as the most energy efficient choice. But if the outside light level is

insufficient, the second rule will also become active, which means the only choice

left will be to turn on the lamp, as it will satisfy both rules.

6. Dynamic Dependency Graph

The environment size for pervasive smart buildings may become considerably large,

easily reaching hundreds of variables. One of the goals of the RME component

is to ensure that such environments can be handled in real-time, thus rechecking

all variables after every event registered by one of the sensors is definitely a non-

practical solution.

It is better to recheck only parts of the environment, which are actually affected

by a change. This is, however, not always a straightforward task. Dependencies are

introduced via rules, but it is not enough to recheck all the rules that contain the

changed sensor to find a new optimal state of the environment, as easily shown by

the earlier example that requires either the lamp to be on or the blinds to be open

during the day, if people are inside the room. Let us assume that rules (2) and (3)

compose our ruleset. When it is still dark, someone enters the room, so sensor values

are room1.presence > 0 and outsidelux = 500. The only way to satisfy both rules

is to turn on the lamp, so the system does it, while keeping the blinds shut. Now

the outside light gradually increases, and at some point becomes bigger than our

threshold: outsidelux = 1100. At this moment only the sensor from the rule (3) is

changed, and the rule is not active anymore. But because of this change the first

rule (2) can now be satisfied in a different way, by opening the blinds, which is more

energy efficient, so it also needs to be rechecked.

Another option is to transitively consider all variables affected, if they are a part

of the affected rules. However, this will largely overestimate the amount of rules

and variables to be rechecked. For example, assume we have a rule (desk1.chair =

occupied ∧ desk1.paperwork = true) ⇒ desk1.lamp = on, and the chair becomes
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occupied, while the paperwork does not change and remains false. In this case the

total antecedent of the rule has not changed, it is still not satisfied, thus we should

not even trigger the rechecking of the lamp and all other variables, which may be

dependent on it.

The dynamic dependency mechanism, which is realised via the use of the De-

pendency Graph, is specifically the mechanism designed to keep track of the actual

dependencies between the variables, based on the context information, and only

invoke re-optimization tasks for the smallest subsets of the variables which are ac-

tually affected.

As shown in Section 5, after performing rule transformations, we obtain an

internal set of rules R, where every rule r ∈ R is in a form Fs(S) ⇒ Fa(A),

specifically
∧

s∈S(P (s))⇒
∨

a∈A(P (a)).

First of all, sensor variables should be removed from the CSP model. At every

moment in time sensor variables have a particular valuation, based on the context

environment information, and represented by a set of rules Rs: s = ds, ∀s ∈ S.

Therefore, while the sensor values influence the valuation of actuators, the sensors

themselves are not decision variables, as only a single value is applicable to them,

and we know this value in advance.

The rule form Fs(S)⇒ Fa(A) helps to construct an equivalent CSP model that

does not contain sensor variables. For this, we define an active property of rules:

Definition 6.1. Active/inactive rule. A rule r = (F r
s (S)⇒ F r

a (A)) is active in

the current state of the environment, i.e. with a given valuation of sensors Rs, if

the antecedent part of the rule F r
a (A) valuates to true, and inactive otherwise.

Let R∗ ⊆ R represent an active subset of rules R.

If the rule is inactive, it poses no constraint for the actuator values, as the full

rule is already satisfied regardless of them. So the rule may be removed from the

CSP model at this moment in time. The activeness of a rule changes with time and

different sensor values.

Using the notion of rule activeness, we change the previous CSP definition:

CSP (V,Ro

⋃
Rs) ≡ CSP (A,FR

A ),

where FR
A = {F r

a (A)}, ∀F r
a (A) of r ∈ R∗

Not only such definition removes all sensor variables from every consecutive CSP

task, but also many original rules are removed, leaving only those that are actually

relevant to the current situation and state of the environment. Given the nature

of smart environment rules, it is usually a small subset of the original rules at any

moment in time.

The next step in transforming the task definition is to find sets of dependent

variables. For this, we formally define dependency of variables and rules:

Let X(Vx) represent the set of full Cartesian product of values for a variable set

Vx: d(vx1)× d(vx2)× . . ..
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Let r(x) for r ∈ R and x ∈ X(A) identify the result of evaluation (true or false)

of the consequent actuator part Fa(A) of a rule r with actuator values in valuation

x.

If Br = {ar1, ar2, . . .} is a subset of actuators Br ⊆ A, then let NBr be a

complement subset: NBr = A\Br.

Definition 6.2. Dependency. The rule r ∈ R is said to introduce a dependency

over a subset of actuator variables Br = {ar1, ar2, . . .} (or, alternatively, a rule r

depends on variables ar1, ar2, . . .), iff:

(1) ∀x ∈ X(NBr) : ∃w1, w2 ∈ X(Br) s.t.: r(x× w1) 6= r(x× w2)

(2) @anb ∈ NBr s.t. ∃d1, d2 ∈ d(anb), ∀x ∈ X(NBr\anb), ∀w ∈ X(Br) : r(d1 ×
w × x) 6= r(d2 × w × x)

(3) @ab ∈ Br s.t. ∀d1, d2 ∈ d(ab), ∀w ∈ X(Br\ab), ∀x ∈ X(NBr): r(d1 × w × x) =

r(d2 × w × x)

The first part ensures that the result of a rule evaluation will indeed change with

different valuations of variables in Br.

The second part ensures that the set Br is complete, i.e. there is no variable

outside of this set, s.t. changing a value of this variable will still result in a change

of a rule evaluation result.

The third part ensures that the set Br is minimal, i.e. there is no variable in

this set, which does not influence the evaluation result irrespectively of its value.

We use the dependency relation to find subsets of dependent variables and rules.

To do it, we introduce a dependency graph:

Definition 6.3. Dependency graph. The dependency graph for a set of actuators

A and a ruleset R is a bipartite graph G = 〈A,R,E〉, where A and R are two sets of

vertices, and E ⊆ A×R is a set of edges, (a, r) ∈ E iff the consequent part Fa(A)

of the rule r depends on a.

Figure 1a shows a dependency graph example. Two disconnected subgraphs in

the figure represent a static independency, i.e. there is no rule that may potentially

make the variables from different connected subgraphs dependent on each other.

Every rule and every variable are a part of only a single subgraph, and it is clear

(see Lemma 6.1 for proof) that instead of having a single big CSP with all variables

and rules combined, it is possible to “divide and conquer” by creating several smaller

CSPs for every independent subgraph.

But most of the division benefits are gained not from static, but from dynamic

independency, which exists when there are no active rules that make the variables

mutually dependent. This dependency changes over time and with different sen-

sor values, so two variables may be dynamically dependent at one moment, and

independent at the next one.

Definition 6.4. Active subgraph. At a certain moment in time, an active sub-

graph of the dependency graph G is a connected subgraph of G that consists only



October 3, 2014 13:3 WSPC/INSTRUCTION FILE rme-journal

14 V. Degeler, A. Lazovik

of active vertices.

(a) All rules are active (b) r1 is inactive (c) r3–r5 are inactive

Fig. 1. Dependency graphs

Examples of active subgraphs are shown in Figures 1b and 1c. By using this

notion, we show that our solution to the DCSP of smart environments is globally

optimal even with partial environment rechecking. First, we prove a lemma that

smaller-sized CSPs for connected active subgraphs can be solved independently.

Then, we prove the main theorem, stating that at every subsequent step it is possible

to only recheck those subgraphs that changed their structure.

Lemma 6.1. For any set of solutions xi ∈ X(Ai) for all connected active subgraphs

Gi ⊂ G, Gi = 〈Ai, R
∗
i , E〉 s.t.

⋃
i(Gi) = G,

⋃
i(Ai) = A,

⋃
i(Ri) = R∗, their

combination x =
⋃

i(xi) is a solution of the full CSP (A,FR
A ), ∀r ∈ R∗. And vice

versa, if x ∈ X(A) is a solution to the full CSP, when split into subsets of variables

per active subgraph, these values will be a solution to smaller CSPs for connected

active subgraphs: CSP (A,FR
A ) ≡

⋃
i CSP (Ai, F

Ri

Ai
)

Proof. We split the proof into two parts. First we prove that if x ∈ X(A) is a

solution to CSP (A,FR
A ), then all xi which are parts of the x that contain variables

from active subgraphs Gi, are solutions to respective CSP (Ai, F
Ri

Ai
). Then we prove

that if ∀i: xi is a solution to the CSP (Ai, F
Ri

Ai
) of the subgraph Gi, then x =

⋃
i(xi)

is a solution to the full CSP (A,FR
A ).

1. Assume x ∈ X(A) is a solution to CSP (A,FR
A ). Then x must also be a solution

for a CSP (A,FRi

A ), ∀i, since these CSPs contain the same set of variables A, but

only a subset of original constraints Ri ⊆ R∗, therefore are less restrictive. From

Definition 6.2 and Definition 6.4 it follows that the satisfaction of constraints Ri

from active subgraph Gi depends only on variables from subset Ai, irrespectively

of values of variables A\Ai, thus the rules Ri are satisfied by valuation of xi ∈
X(Ai), xi ⊆ x, therefore the smaller CSP (Ai, F

Ri

Ai
) must also be satisfied ∀i.

2. Assume that ∀i: xi ∈ X(Ai) is a solution to CSP (Ai, F
Ri

Ai
). If we add new

variables A\Ai (to the total set of A) for every such CSP to obtain CSP (A,FRi

A ), it

will be satisfied for any valuation of new variables, since by Definitions 6.2 and 6.4 no

constraint out of Ri changes its satisfaction status no matter the values of a ∈ A\Ai.
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Therefore we can use valuation x = x1 × x2 × . . . to satisfy all CSP (A,FRi

A ). So,

the valuation x satisfies all rules in every set Ri. Therefore it must satisfy all rules

in a combined set R∗ =
⋃

i Ri, ∀i, which means the valuation x must be a solution

to the CSP (A,FR
A ).

Since every cost function only depends on a single variable, if x is optimal for

CSP (A,FR
A ), all xi ⊆ x must also be optimal for the respective smaller CSPs.

Otherwise, if a valuation x′i is better for CSP (Ai, F
Ri

Ai
), following the chain of

reasoning from part 2 of the proof, we arrive to conclusion that valuation x′ =

x\xi ∪ x′i must also be a solution to CSP (A,FR
A ), and it must be better than x,

which contradicts the premise. And vice versa, if all independent subsets xi are

optimal, the full set x must also be optimal.

During the operation of the smart environment system, new sensor readings ar-

rive as events. The change in a sensor value may potentially cause some rules to

change their activeness status. The check takes constant time for every rule, as the

form
∧

s∈S(P (s)) ⇒
∨

a∈A(P (a)) ensures that only a single atomic predicate P (s)

for a sensor s may change, and needs rechecking. Only the change in activeness sta-

tus affects the actuators, and only a small percentage of new sensor readings actually

change the activeness of a rule, which saves the system from many unnecessary CSP

solution invocations.

The change of activeness status changes the structure of active subgraphs around

the rule. Either a single subgraph has one more (one less) constraint, or two or more

subgraphs may join into one (one subgraph split into two or more).

We now prove the main theorem for DCSP in smart environments:

Theorem 6.1. For every event in the system, only active subgraphs that changed

their structure must be rechecked for the whole valuation of actuators to remain

satisfied and optimal.

Proof. Let xt be the optimal solution found for the CSP (A,FRt

A ) at time t, with

active rules Rt. Let Gt represent a set of active subgraphs Gt
i at time t. Let xt+1,

CSP (A,FRt+1

A ), Rt+1, Gt+1 represent same notions for the time t + 1.

We split xt to a set of valuations {xt
i} that correspond to active subgraphs Gt

i.

As proven in Lemma 6.1, every xt
i is a solution to a corresponding CSP (Ai, F

Rt

Ai
).

Let a sensor change at time t + 1 make ruleset Rt+1
− inactive and ruleset Rt+1

+

active. The total active ruleset at time t + 1 is thus Rt+1 = Rt\Rt+1
− ∪ Rt+1

+ , and

the rules Rconst = Rt\Rt+1
− are active at both times t and t + 1.

Since variable vertices are always active, active subgraphs that consist only of

rules in Rconst are defined by Gconst and are the same for both times: ∀Gi s.t.

Ri ⊆ Rconst: G
t
i = 〈Ai, Ri, E〉 = Gt+1

i . Since we know that xt
i is a solution for Gt

i,

it must also be a solution for Gt+1
i . Let us denote the set of valuations for Gconst

as xconst.

Let xt+1
nc represent (newly found) solutions for all active subgraphs Gt+1\Gconst.
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As proven in Lemma 6.1, the combined xt+1 = xconst × xt+1
nc must be a solution

for the CSP (A,FRt+1

A ). Therefore it is proven that it is possible to reuse solutions

xconst from Gconst in a global solution.

In the case of a usual CSP instead of an optimization CSP, i.e. if the cost of the

solution is not relevant and any solution that satisfies the rules is equally good, the

dynamic rechecking can be made even smaller, as the rechecking will be required

only if the constraint is added (i.e. the rule becomes active), but not if the rule

becomes inactive, as in this case the previous solution is still valid.

Algorithm 2 Event processing

1: function processChange (s,ds)

2: for all rule← R s.t. rule.Fs contains s do

3: Update rule status

4: Mark rule as changed if status is changed

5: end for

6: while ∃rule ∈ R s.t. rule is changed do

7: subGraphs← findActiveSubGraphs(rule)

8: for all sg ← subGraphs do

9: newstate← OptimizeCSP (sg)

10: for all vc ∈ sg.vars s.t. vc 6= newstate.vc do

11: createAction(vc,newstate.vc)

12: end for

13: Unmark changed status from all r ∈ sg.rules

14: end for

15: Unmark changed status from rule, if still marked

16: end while

Algorithm 2 presents the reaction of the system to a new sensor reading s = ds.

For all rules from a ruleset R that depend on s, the system checks the status of the

rule (active vs. inactive), and if the status is changed, the rule is marked accordingly.

While a changed rule r exists, the system finds a set of adjacent active subgraphs

for this rule. If rule changed to inactive there may be more than one. The optimiza-

tion CSP is invoked for every such subgraph. For all actuators that changed their

state an action is created and is sent further to be executed. Finally, the system

removes changed status from all rules in checked subgraphs and the original rule.

7. Explaining the Actuation

It is essential for general acceptance of any smart environment system that people

remain in full control of it. It is important for them to be able to override the

decisions of the system, but it is equally important to be able to understand why the
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system decided to perform the actuations that it had performed. Such understanding

not only gives insights to the reasoning of the system, but also allows to tweak its

behavior with minimum changes, if the behavior is not the expected one or the

desired one.

A typical smart reasoning system as the one described in this paper may have a

large amount of rules added over time. Moreover, every particular actuator may be

referenced by many different rules that are often entered to the system by different

people. With increasing amount of rules, it becomes increasingly hard to keep them

fully consistent. However, while it is desirable to keep the system consistent at

all times, strictly rejecting the rules that may potentially cause an inconsistency

is very often impractical if the rules are unlikely to collide. For example, assume

that two people, Alice and Bob, share a room at work, but they work in shifts,

so that their working schedules never overlap. Alice works during the day, and

she prefers not to use artificial lighting, therefore she adds the rule Alice.location =

room1⇒ room1.lamp = off . Note that the rule is very simple, and does not include

exceptions for many intricate situations, yet it works perfectly fine for Alice’s needs.

On the other hand, Bob works in this room in the evening, and he always needs an

artificial light, so he adds the rule Bob.location = room1⇒ room1.lamp = on. As

long as these two rules are part of the system, there is a potential unsatisfiability for

the room lamp status. Indeed, on a very rare occasion Alice and Bob may happen

to be in the room at the same time, which will cause the system to issue a warning

about the unsatisfiable status of the lamp. Even if Alice and Bob never work at the

same time, the system should have this fact explicitly stated as additional constraint,

in order not to detect potential inconsistency. One of possible solutions would be

to change the second rule to Bob.location = room1 ∧ ¬Alice.location = room1 ⇒
room1.lamp = on, yet it makes the rule more complex, and requires Bob to think

in advance about potential situations and implications on other rules without his

direct involvement, which is an unreasonable requirement for an average user of the

system.

For the reference implementation of the Rule Maintenance Engine we opted

to allow potential inconsistencies in the specified rules. As long as all rules can

be satisfied given the current situation of sensors, the system works as planned.

However, if there is a conflict, which cannot be resolved given the current state of

sensors, it is logged and a corresponding warning is issued to a facility manager or

some other person in charge to resolve the conflict. During the conflicting state, no

actuations are performed on the actuators that are part of the inconsistency. When

asking a person to resolve an inconsistency, it is very important to pinpoint exact

rules or parts of the rules that caused it. Due to potentially huge amount of rules,

checking manually all rules that contain the affected actuator (in our example these

are all rules that contain room1.lamp), as well as those that transitively contain

other dependent actuators, will require to check many irrelevant rules.

Unsatisfiability resolution is not the only case when people may need to under-

stand the reasoning behind the provided system decisions. For example, for the rule
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Table 1. Highlighting inconsistency in original rules.

ID Original rules

1 room.presence > 0⇒ room.lamp = on ∨ outsidelux > 1000 ∧ room.blinds = open

2 chair.pressure = true⇒ room.lamp = on ∨ desk.lamp = on

3 desk.activity = workWithPC ⇒ room.blinds = closed∧
desk.PC = on ∧ desk.LCD = on

4 ¬(desk.activity = workWithPC ∧ desk.lamp = on∨
desk.activity = paperwork ∧ desk.lamp = off)

5 room.activity = presentation⇒ room.beamer = on∧
room.lamp = off ∧ desk.PC = on

ID Transformed rules

1.1 room.presence > 0⇒ room.lamp = on ∨ room.blinds = open

1.2 room.presence > 0 ∧ outsidelux ≤ 1000⇒ room.lamp = on

2.1 chair.pressure = true⇒ room.lamp = on ∨ desk.lamp = on

3.1 desk.activity = workWithPC⇒ room.blinds = closed

3.2 desk.activity = workWithPC ⇒ desk.PC = on

3.3 desk.activity = workWithPC ⇒ desk.LCD = on

4.1 desk.activity = workWithPC ⇒ desk.lamp 6= on

4.2 desk.activity = paperwork ⇒ desk.lamp 6= off

5.1 room.activity = presentation⇒ room.lamp = off

5.2 room.activity = presentation⇒ room.beamer = on

5.3 room.activity = presentation⇒ desk.PC = on

Fig. 2. Dependency Graph for rules in Table 1 and sensor values in Table 2

Table 2. Sensor values.

Sensor State

chair.pressure false

desk.activity workWithPC

outsidelux 1500

room.activity presentation

room.presence 5

in Equation 1, a person who added the rule may reasonably expect that during

daytime the blinds will remain open (instead of the lamp being turned on) as it is

the most energy efficient solution. If for some reason the system decides to turn on
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the lamp, the person may want to understand why such decision has been made.

Very often the reason is that some other rule added constraints preventing blinds

to be open, but manually finding such rules may be a hard and tedious process. As

with the case of unsatisfiability, the system should be able to show exactly, which

rules or parts of rules participate in the current solution of turning on the lamp

instead of opening the blinds.

Interestingly, the Dependency Graph allows to address these issues easily. Dur-

ing the rule transformation process that is described in Section 5 and in Appendix,

every original atomic predicate can be traced from the original rule to the trans-

formed rules. This feature allows the system to mark those atomic predicates that

participate in the unsatisfiable CSP task. It also allows to mark all atomic predicates

that are in the same subgraph as a certain actuator (e.g. room.lamp in our exam-

ple). Only those parts of rules should be shown to the person and examined, which

largely reduces the amount of time for manual rules examination and correction.

For example, Table 1 presents original rules, as entered by people, and trans-

formed rules, as they are used to create a dependency graph, which is itself shown in

the Figure 2. The activeness status corresponds to the state of sensors as shown in

Table 2. The rules that are marked as bold produce an unsatisfiable active subgraph.

Note that only relevant parts of the original rules are highlighted.

8. Evaluation

8.1. Architecture

The internal architecture of the Rule Maintenance Engine implementation is shown

in Figure 3.

The Web User Interface presents all information about the RME system and

its decisions to users. The RME itself runs as a back-end server, and provides a

REST interface to show and modify the data.21 The REST interface is used by the

front-end of the system, which consists of a client web interface which runs on the

Play Frameworkb and an HTML5-based interface for building context information

and immediate manual control via mobile devices, such as smartphones and tablets

running Android. The REST interface can also be used by other applications to

make modifications to the system programmatically.

The initial configuration of the RME system is loaded at startup from the Repos-

itory. The Repository contains all required information about the devices, services,

or virtual variables, which together form an environment description for the RME.

The Repository also contains the latest values of the sensors, so it is immediately

possible for the RME to make an initial check of the environment and issue any

state goals. This also makes the system tolerant to failures and crashes, as it auto-

matically returns to its latest state after restart. Users can override any part of the

environment configuration via the dedicated Web UI. The reconfiguration, as well

bhttp://www.playframework.com/
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Fig. 3. Rule Maintenance Engine Architecture

as addition of new devices or modification of existing ones can be done dynamically,

without the need of restarting the system.

Another part of the RME system is the Rule Manager, which manages the set

of rules of the building behavior. The initial set of rules is loaded at the startup of

the system. It is also possible to switch between sets, and a user can modify any

rule, add new ones, or remove obsolete ones through the dedicated Web UI. Every

rule is a formula in predicate logic, it can be added in any form by the users, then

it will be checked for correctness and consistency, and then it will be transformed

into the internal constraint form, which is used by the Rule Maintenance Engine.

The transformation is done once every time the rule is added or changed, and it

may result in several internal constraints from a single initial rule.

Devices and rules are combined in the Dependency Graph Manager (DG). It

contains the current environment state; the commands, issued to the actuators, and

their execution status; warnings about currently unsatisfiable rules; which manual

goals were set by system’s users previously, etc. All this information is shown on

a “Current Environment State” dashboard of the Web UI. This is one of the main
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dashboards available to users, through which they can control the system and keep

track of its status.

Sensors are the main source of events. The Context component collects raw

sensor data, processes it, performs activity recognition,22,23 and sends results to

the RME. For the RME effectively both low-level sensors and high-level activities

are represented through environment variables. Since there can be many events per

second, the scalable and highly reliable messaging system is used to transfer this

information. For the GreenerBuildings project the RabbitMQc messaging framework

is used.24 The RME subscribes to the updates it is interested in, and receives them as

soon as they are published by the Context. When the event arrives, the Dependency

Graph Manager checks, which parts of the environment may be affected by this

change, and whether any actuators’ states should be rechecked. If this is the case,

the Solver is invoked, which finds the new optimal states of affected actuators.

The search problem for the Solver is represented as an optimization constraint

satisfaction problem (CSP). We use the CHOCO2 Solverd library for the task.25

The second way of obtaining events is from the User Control component (or UI),

where users may set their goals manually. For example, the current rules may say

that a temperature in a certain room may be as low as 19 degrees Celsius, but if

a user specifies that she wants the temperature to be 22 degrees, the event will be

generated and sent to the Dependency Graph Manager.

Finally, when it is calculated that some actuator should perform a certain action

or change its state, the goal is generated by the Dependency Graph Manager and

is sent further to the GreenerBuildings system for execution.

8.2. Living Lab

The system was evaluated in the living lab constructed on the premises of the

Technical University of Eindhoven, the Netherlands. In this section we will describe

the implementation details of the living lab.

The living lab features two large spaces: a working room with four working desks,

and a meeting room, with a meeting table and a presentation area. The sensors

include Plugwise power meterse, CO2 and humidity, passive infrared (PIR) motion,

temperature, light, ultrasound (USR), acoustic. The actuators include Plugwise

switches for devices such as projectors and lamps, dimmers for fine-grained control

of ceiling lamps’ light levels, motor controllers for blinds heights and angles, HVAC

system.

As variables, the Rule Maintenance Engine contains both raw sensor data and

activity recognition results. Tables 3 and 4 show the description of the variables

within the RME system. In total there are 135 variables. Among them 82 represent

physical sensors and contain raw sensor data, 26 represent virtual sensors with

chttp://www.rabbitmq.com/
dhttp://www.emn.fr/z-info/choco-solver/
ehttp://www.plugwise.com/
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higher level recognized activity, and 27 represent actuators, 3 of which belong to

the thermo-fluid dynamics (TFD) system.

Table 3. Living Lab actuators details

Number of

Type Name Datatype States/Range variables

Misc Blinds angle Float -90.0..90.0 3

Misc Blinds height Float 0..265 3

TFD PMV comfort Float -2.0..2.0 1

Misc Table lamp Boolean true/false 4

Misc Light dimmer Integer 0..1000 10

TFD Policy Set comfort/economy 1

Misc Screen Boolean true/false 4

TFD Temperature Float 16.0..27.0 1

Total number of actuators: 27

Rules were changing over time, with the original preset having 39 rules that are

transformed as described in Section 5 into 62 internal constraints. The rules are de-

signed for different adaptation scenarios, which include the adaptation for natural

and artificial lighting, different activity types in a meeting room, rules for working

space personalization, heating system, etc. Control UI allows users to override sys-

tem’s decisions, and set any actuator manually. Here we present the main ideas of

several rule adaptation scenarios.

The first scenario concerns adaptation of natural lighting, and contains rules

for blinds control (except those that are defined for the meeting and presentation

activities, see below). It is usually beneficial for a room to get natural light and

warmth from the outside, but when the natural light outside is too bright, it causes

glares inside, so the system must ensure that the blinds angle is enough to give suf-

ficient light inside, but not that small to enable sun glare, which decreases people’s

comfort. The total number of human-defined rules for this case was 5, and these

rules translated into 15 internal rules. Examples of these rules are:

room313.presence1 = false⇒ room313.blinds.height1 = 0

room313.presence1 = true⇒ room313.blinds.height1 = 100

light.luxlevelout1 > 5000⇒ room313.blinds.angle1 > 70

The next scenario is the activities in the meeting room and adaptation to them. It

is possible to have a normal brainstorming meeting inside, or to give a presentation,

or even none of the above, as the room is open for occasional presence. If people

are present inside, but there is no presentation, the total lighting level should be

sufficient (at least 500 lux). If the brainstorming meeting is taking place, the light

levels should be even higher. There are several different dimmers on the ceiling,

so there are many different ways to achieve such conditions. If people use manual
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Table 4. Living Lab sensors detailed

Number of

Type Name Datatype States/Range variables

Raw Projector Boolean true/false 1

Raw CO2 level Float 100..3000 1

Raw Outdoor CO2 level Float 100..3000 1

Raw Computer status Boolean true/false 4

AR Computer work Boolean true/false 4

AR Desk work Boolean true/false 4

Raw Door Boolean true/false 2

AR Energy balance Float -10000..10000 1

AR Heat losses Float -10000..10000 1

AR PMV Status Float -2.0..2.0 1

AR Policy Status Set comfort/economy 1

Raw Humidity Float 0..100 4

Raw Outdoor Humidity Float 0..100 1

Raw HVAC heat production Float -10000..10000 1

Raw HVAC status Boolean true/false 2

Raw Lamp status Boolean true/false 4

Raw Light power consumption Integer 0..400 4

Raw Lux level Float 0..30000 5

Raw Outdoor lux level Float 0..30000 3

Raw Lights status Boolean true/false 4

Raw Lights switch Set 0, 1, 2 4

AR Meeting brainstorming Boolean true/false 1

AR Presentation Boolean true/false 1

Raw Power consumption Float 0.0..1320.0 15

Raw Distance Integer 0..100 9

Raw Motion Boolean true/false 4

AR Number of people Integer 0..50 2

AR Area presence Boolean true/false 9

Raw Status screen Boolean true/false 4

Raw Outdoor temperature Float -10.0..80.0 1

AR Indoor temperature mean Float 16.0..27.0 1

Raw Indoor temperature Float -10.0..80.0 4

Raw Window Boolean true/false 4

Total number of sensors: 108

control to set certain dimmers to their preferred level, it is possible to use dimmers

in other areas to satisfy the rule.

If a presentation is in progress, special lighting conditions should follow. First of

all, the dimmable light spot directly above the presentation screen should be fully

off, otherwise the visibility of the screen severely decreases. Other dimmers should

keep certain level of light, which, however, should stay low, so not to decrease the

screen visibility. The 3 human-defined rules are translated into 10 internal rules.

Examples are:

room313.presence1 = true ∧ room313.meeting.presentation 6= true⇒
room313.light.dimmer1 > 200 ∧ room313.light.dimmer2 > 200 ∧

room313.light.dimmer4 > 100
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room313.meeting.brainstorming = true ∧ room313.meeting.presentation 6= true

⇒ room313.light.dimmer2 > 600 ∧ room313.light.dimmer3 > 600 ∧
room313.light.dimmer4 > 600

room313.meeting.presentation = true⇒ room313.blinds.angle1 > 80 ∧
room313.light.dimmer2 = 0 ∧ room313.light.dimmer1 < 300 ∧

room313.light.dimmer4 < 300

The heating mechanism of GreenerBuildings is based on the Computational

Fluid Dynamics (CFD) modulef , which calculates the air quality, temperature, hu-

midity, and other climate conditions within the room, and uses available actuators

for fine-grained control of the climate comfort levels. As there is a dedicated module

which does the required complex computations, the RME does not invoke heating

actuators (such as HVAC module) directly, and instead has abstracted actuators,

namely mean temperature, policy (economy or comfort) and PMV (predicted mean

vote) comfort level. When the best value of abstracted actuators is calculated, it

is sent to the CFD component, which performs the necessary fine-grained control

of physical devices. The RME rules include having a comfort policy only when

there are people inside (otherwise it is automatically set to economy), and stopping

all fine-grained control if windows are open. Most of the time, people add their

own rules for the temperature levels, which they deem comfortable to them, so the

temperature rules are not included in the preset. The 2 rules that are included

correspond to 5 internal rules:

room313.window1 = true ∨ room313.window2 = true⇒
room313.pmv = unmanaged ∧ room313.temperature mean = unmanaged

room313.presence1 = true⇒ room313.policy = comfort

Working areas are the areas where most of the “personalized” rules appear, as

naturally the area is occupied by one person. The preset rules use standardized

approach, by turning off the screen when the person is not around, distinguishing

the lighting conditions for desk work and computer work, etc. The human-defined

preset rules include 17 rules, which translate to 20 internal rules. Examples are:

room326.presence1 = true⇒ room326.screen1 = true

room326.desk1.deskwork = true⇒ room326.light.dimmer1 > 700

room326.presence1 = true ∧ room326.desk1.computerwork = false

⇒ room326.light.dimmer1 > 500

room326.desk1.computerwork = true⇒ room326.light.dimmer1 < 500

fFluid Solutions - @lternative, http://fluidsolutions-a.com/
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There is a special type of rules, introduced for smooth continuous operation of

the system: trigger rules. The initial reason for them is the capability of the people

inside the building to manually control some of the actuators. For example, lamps

or the temperature setting is generally controlled by the system via the defined

rules. However, a person has the ability at any moment to press the lamp switch

or to set a certain temperature level on the thermostat. Such ability to manually

set the state of the building even in contradiction with previously defined rules is

very important to retain even in highly automated buildings, as it keeps people in

full control increasing their overall satisfaction level. So, once a person sets some

actuator manually, this actuator should be forbidden to be changed by the system.

It may still be possible to satisfy existing rules in a different manner. For example,

for the rule (1), if a person prefers to keep the blinds closed, it is still possible to

turn on the lamp, which will satisfy the rule. But then another problem arises. Once

a certain actuator is activated manually, when is it possible for the system to “take

it back”, i.e. to remove the restriction on its state modification? For example, once

a person turned on a lamp, if she goes away from the room, we may assume that the

restriction is no longer valid. Trigger rules are designed specifically for such case.

The rule may be specified, as usual, but it must be specifically marked as a trigger

rule, and two additional things must be provided: (1) the actuator, for which the

restriction is removed once the rule is satisfied, and (2) the type of the restriction

that is removed. The current implementation of the system supports two types of

restriction: the manual user input, and the error in the device (which marks the

device as broken, and stops the control of it until fixed). In the preset, all devices

are released from their user restriction if the room becomes unoccupied. There are

12 preset trigger rules, an example of such a rule is:

actuator : room326.light.dimmer3

type : user feedback

rule : room326.presence1 = false

The operation of the living lab showed that our module solves all resulting CSPs

in a matter of milliseconds, returning real-time commands to actuators. The next

step of the project is to extend the system to more rooms, and the whole building, so

the next section discusses the performance and scalability potential of our solution

in depth.

8.3. Performance

To evaluate the effectiveness of our solution with greater flexibility, we also made

performance experiments that were running on Windows 7, Intel Core2Duo E7400

@2.8GHz, 4 Gb RAM, Java7 machine. As a baseline, we used random instances with

boolean variables. Note that any instance with arbitrary sizes of domains can be

converted into an equivalent instance with boolean variables, one per each domain

value. Every instance has half of its variables as sensors, and half as actuators. For
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every set of parameters we generate 50 different instances. Every instance ran for

100 sensor change events. For every event the time to find a solution is recorded,

and the average time across these runs is presented in the figures. Every rule is a

random constraint between two sensors and two actuators, and the number of rules

equals to the 120% of the number of variables.

(a) CSP vs. DG, log scale, clusterization values of 0.9, 0.6, 0.3, 0.0

(b) DG-only close-up

Fig. 4. Average solution times of CSP and DG representations

We also analyzed the impact of clusterization on the performance of the DG

solution. In smart environments most variables are naturally split into clusters of

highly-dependent variables, e.g. by location, with loose dependency between clus-

ters. Thus we introduce clusters of variables in our instances, with varying degrees

of clusterization. For example, for a degree of 0.6, 60% of rules will connect variables

within a cluster, and remaining rules connect any variables, also across clusters. We

used clusterization values of 0.9 (very distinctly defined clusters), 0.6, 0.3 and 0.0

(no clusters, every rule connects variables fully randomly). The number of clusters

is
√
|V |, so an instance with 40 variables has 6 clusters with 6-7 variables each,

while an instance with 400 variables has 20 clusters with 20 variables each.

Figure 4 compares solution times using a natural CSP definition (as given in

Section 4), and using the Dependency Graph data structure. The time of rule ac-

tiveness rechecking and graph traversals is included into the resulting time for the

DG, i.e. results include all overhead, associated with using the DG data structure. It
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can be seen that for all cases DG severely outperforms the natural CSP definition,

staying at around 10 milliseconds time for over 200 variables, while CSP already

goes to over 1000 milliseconds solution time for such cases. The clusterization pa-

rameter has no influence on CSP solution time, which is expected, since CSP takes

the full environment into account. However, for DG it is shown, that the bigger the

clusterization is, the lower the solution time will be, which also means much bigger

scalability potential for implementing the solution in smart buildings.

Table 5. Random instance run, 100 variables, 0.0 clusterization

Event 1 2 3 4 5 6 7 8

CSP Time 45.68 41.38 71.06 36.05 25.24 32.93 34.02 66.47

DG
Time 8.71 12.11 8.47 10.62 7.86 6.71 5.69 4.19

Size(s) 1;21 22;1;1;8 1;1;20 26;2 3;25 25;5 1;26 1;1;3

Event 9 10 11 12 13 14 15

CSP Time 29.42 31.18 31.04 56.98 29.20 29.10 66.16

DG
Time 8.33 7.83 4.88 0.08 18.04 2.80 4.46

Size(s) 1;1;23;1 22;1;2;1 2;20 - 2;1;2;1;1;20 21 3;5;17

For better insight we included the detailed data from one of the runs of the

system on an instance of 100 variables with 0.0 clusterization in Table 5. Every event

corresponds to a single sensor change. The size of the CSP definition is always the

same (100 variables, among which 50 are decision variables, i.e. actuators), while

the DG size varies, depending on the current size of active subgraphs. As every

sensor can be a part of several rules, it is customary that a single sensor change

triggers re-optimization of several subgraphs. E.g. event 6 triggers two DG tasks,

one with 25 variables, and the other with 5 variables. Event 12 has no impact on

active subgraphs, so no re-optimization occurs.

9. Conclusions

In this paper we investigated the problem of finding the best environment state that

conforms to all constraints that appear due to physical environment configuration

and due to different preferences of users. We showed that such a problem can be

easily modelled as a constraint satisfaction problem (CSP). However, the straight-

forward CSP task does not fulfill the requirements for scalability and computational

efficiency, because of multiple unnecessary computations that need to be performed

after every new sensor change. Since in a dynamic environment there may be many

sensor changes per second, the system may not be able to respond to changes in

real-time.

The dependency graph data structure that is introduced in this paper is able

to dynamically keep track of interdependent parts of the environment. After every

sensor change the dependency graph provides information on which parts of the

environment and which rules are affected by it. We formally proved that it is possible
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to only recheck the affected part while still keeping the full environment globally

satisfied and optimal.

The experiments performed in a real living lab environment and in simula-

tions proved that the usage of the dependency graph consistently outperforms the

straightforward CSP task. The solution for real environments is able to compute the

optimal answer in real-time, therefore it complies to the requirements of scalability

and computational efficiency.

The description of real smart environments shows that such environments con-

tain clusters of variables, with high level of dependency among variables within a

cluster, and loose dependency of those variables on variables outside of the cluster.

Clusters usually contain variables within a single physical space, such as a room or

a single working desk, and sometimes clusters can be split by nature of variables,

for example variables that affect lighting system can form a cluster. The experi-

ments performed with the solution based on the dependency graph showed that the

performance increases with more distinctly defined clusters.
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Appendix

In this appendix we present Algorithm 3, which describes the process of rules trans-

formation to the CNF form. Note that we do not allow negated atomic predicates,

therefore a step is added that flips the operation of an atomic predicate if it is

negated.
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