
A Model of a Malware Infected Automated Guided Vehicle for Experimental
Cyber-Physical Security

Richard French, Viktoriya Degeler and Kevin Jones
Airbus Group Innovations

Newport, UK
richard.french@airbus.external.com, viktoriya.degeler@airbus.com and kevin.jones@airbus.com

Abstract—As part of a factory’s manufacturing cycle, mate-
rials need to move through a sequence of operations provided
by work-cells, eventually culminating in the finished product.
To facilitate this, the collection and delivery of materials around
a factory environment is often provided by a fleet of Automated
Guided Vehicles and results in increased reliability and reduced
operating costs. However, if malware is able to get into the
system via a deliberate cyber attack on the site or indeed by
way of an infected portable data storage device and human
error, then the AGV system is potentially at risk of disruption.
As part of the exploration of this growing problem space new
tools are needed to assist with developing counter strategies
towards blocking such cyber-borne industrial sabotage. This
article describes one such qualitative research tool we have
developed as part of ongoing research into protecting industrial
processes from cyber attack.

I. INTRODUCTION

As part of a factory’s manufacturing cycle, materials need
to move through a sequence of operations provided by
work-cells, eventually culminating in the finished product.
To facilitate this, the collection and delivery of materials
around a factory environment is often provided by a fleet
of industrial robots, known as Automated Guided Vehicles
(AGVs), and results in increased reliability and reduced
operating costs [1]. Significantly, as with all distributed
industrial control systems, this equipment is networked to
allow it to operate with other subsystems such as work-cells
and automated warehousing. However, if malware is able
to get into the system via a deliberate cyber attack on the
site or indeed by way of an infected portable data storage
device and human error (e.g., [2]), then the AGV system is
potentially at risk of disruption.

Undoubtedly, with greater automation of industrial pro-
cesses come great benefits in terms of efficiency and flexibil-
ity in an increasingly competitive business world. However,
with these benefits also come great risks, and as part of
the exploration of this growing problem space new tools are
needed to assist with developing counter strategies towards
blocking such cyber-borne industrial sabotage. This article
describes one such qualitative research tool we have devel-
oped as part of ongoing research into protecting industrial
processes from cyber attack.

This paper proceed as follows: Firstly an overview of
recent cyber attacks on production facilities is given in order

to emphasize the importance of this problem. Next, the
rationale for choosing the AGV as the focus of this work
is given, together with a hypothetical scenario. Following
on, modelling in simulation versus the utility of physically
grounded systems is discussed, explaining how this approach
results in a novel research tool for malware affected cyber-
physical systems. Consequently the implementation of an
AGV model is described. Next, the model malware is
considered, explaining its type, trigger, payload and imple-
mentation. This is followed with an example describing how
the malware affects the model AGV behaviour. Finally, this
paper concludes with a summary of achievements and a
discussion of how this work can assist with development
of counter-measures to attacks on cyber-physical systems.

II. CYBER ATTACKS ON PRODUCTION FACILITIES

The Repository of Industrial Security Incidents database1

holds details of malware attacks that have affected industrial
control systems at production facilities. The following is a
small representative set of examples that aim to illustrate the
importance of this ongoing problem:

• In 2005, an internet worm affected assembly lines at 13
vehicle manufacturing plants. Assembly line workers
were sent home and vehicle production was stopped
for almost an hour.

• In 2008 a system controlling production line operations
was infected by a virus, causing a reduction of capacity.

• In 2010 an Iranian mill, probably for wheat flour, was
affected by the Stuxnet virus2. A 350-ton capacity
multi-purpose mill was shut down. Also, and famously,
in this year, Stuxnet malware affected centrifuge spin-
ning speed causing Iranian uranium enrichment to be
disrupted for at least one week.

• In 2011 the Conficker worm3 spread throughout a
steel plant’s power automation network. This caused
instability in the communications between PLCs and
supervisory stations and freezing most of the supervi-
sory systems.

1http://www.risidata.com/Database
2http://home.mcafee.com/virusinfo/virusprofile.aspx?key=268468#none
3http://home.mcafee.com/virusinfo/virusprofile.aspx?key=153464

• In 2012 oil facilities in Iran were affected by a malware
attack. Consequently equipment on Kharg island and
at other Iranian oil plants were disconnected from the
network as a precaution.

Intuitively, with the increased usage of automation (e.g., [3]),
the likelihood of attack is only going to increase, and with
it, the loss of revenue.

III. SCENARIO

Arguably, attacking the element that underpins the flow
through an automated manufacturing process would yield
the greatest damage. Beyond the control network itself,
a potential candidate for this target in terms of a cyber-
physical system is the AGV. Thus, by disrupting this service,
the entire production line will gradually grind to a halt as
materials go uncollected from automated warehousing and
subassemblies do not progress through to the next stage of
production.

Hence this scenario takes place in a hypothetical modern
production line. AGVs diligently collect material from the
warehouse and deliver it to work-cells, keeping the whole
line running smoothly. However, unbeknownst to the oper-
ators, this factory has been subject to a cyber attack and
some of the vehicles have been infected with malware. This
malicious code has never been seen before and thus avoids
detection by traditional signature-based techniques. Hiding
in a robot’s memory, the malware silently activates. The
robot is now rogue, possibly just stopping and blocking its
guide-path, moving to an incorrect location causing chaos,
or even writing random data directly to its motor control
chips and causing an accident. Clearly this situation has the
potential to become much more than an inconvenience to
production line efficiency.

IV. MODELLING

In order to model the robotic aspect of this scenario
a representation of AGVs in their environment is needed.
What is the best representation for this exercise?

A. To Simulate, or not to Simulate?
There are good reasons for modelling to occur in sim-

ulation. For example, working purely in a virtual world
eliminates many inconvenient aspects of real-world robotics.
Thus, the requirement for actual robot hardware, its mainte-
nance, the space needed to carry out experiments, as well as
degradation through wear and tear on mechanical systems,
can all be ignored. Also as pointed out by Nehmzow [4]:

To conduct experiments with mobile robots
can be very time consuming, expensive, and dif-
ficult. . . . being mechanical and electronic ma-
chines, do not perform identically in every experi-
ment. Their behaviour sometimes changes dramat-
ically, as some parameter changes. Such hardware-
related issues make simulation an attractive alter-
native.

However, using such an abstraction also means moving away
from the unforeseen influences that its real-world counterpart
must be robust to:

. . . there are also good reasons not to simu-
late. In some circumstances, to obtain an accurate
model can be far more work than to run a robot.
And to run the robot will give you true answers,
whilst running a simulation won’t.

And, as Brooks [5] puts it:
. . . because the world is its own best model

(as usual). When running a physically grounded
system in the real world, one can see at a glance
how it is interacting. It is right before your eyes.
There are no layers of abstraction to obfuscate the
dynamics of the interactions between the system
and the world. This is an elegant aspect of physi-
cally grounded systems.

Further, a simulation lacks the physical presence that is
arguably very valuable when demonstrating a real-world
concept to an audience when trying to get the point across.
Therefore an aim of this work is to create a realistic
and physically demonstrable, small form-factor, model that
reacts in real-time to changing conditions in order to present
our ongoing research in the clearest way possible.

B. A New Model?

For the scenario to be realised a model of the malware
is needed too. Thus the end point of this work is a physi-
cally grounded model of an AGV which also incorporates
configurable malware for experimental investigation.

Is this a novel approach? As observed by Le-Anh and
Koster (2004) [6], there . . .

. . . are few review papers on AGV systems.
However, they concentrate on only limited parts
of the problem

Unfortunately we have also found this to be the case, making
comparison of our work with that of others difficult.

From the point of view of a physically grounded
model, although there are examples of full-size prototypes
(e.g., [7]), to the best of our knowledge there are no current
publications describing small robotic models of AGVs for
experimental work. Likewise, although malware propagation
has been simulated (e.g., [8] [9]) and an investigation has
been carried out into cyber attacks on automated vehi-
cles [10], we are not aware of a study in which a robotic
vehicle has been developed with the explicit purpose of
studying the impact of malware with a view to developing
counter-measures.

Hence, we believe this work results in a new kind of AGV
model. It is a physically grounded implementation that offers
complete control over the infection, enabling the resultant
behaviour of a model production facility during cyber attack
scenarios to be studied.

V. MODEL IMPLEMENTATION

Sharma [11] decomposes an AGV system into supervisory
and subordinate controllers, and this is the approach taken
here. In order to maintain focus on the goal of this work
and thus avoid designing a full AGV System, supervisory
and subordinate control functions are simplified whilst also
aiming for a high degree of realism in terms of vehicle be-
haviour. Hence, greater emphasis is placed on development
and operation of the subordinate, rather than the supervisory,
in the remainder of this paper.

A. Supervisory Control

The AGV Controller (AGVC) is the supervisory level
control, responsible for AGV assignment to a particular
job together with route planning and control of vehicle
interactions. In this work, the AGVC simply assigns the
nearest free AGV to the collection point, creates a route
for it and sends the robot on its way.

B. Subordinate Control

Subordinate control is carried out on each AGV and
is responsible for the robot’s navigation and behaviour in
pursuance of its allocated job:

1) AGV Navigation: The pathway an AGV travels be-
tween collection and delivery points is often described by
a buried cable, magnetic strip or optically detected surface.
Additionally, an AGV can be augmented with varying de-
grees of navigational aids. These may range from index
check-points to counter wheel-encoder slippage during dead-
reckoning, through to machine-readable reference points
such as barcodes and radio-frequency identification tags
positioned along its route (e.g., [12], [13]).

In this work an optically detected navigation grid is
chosen for ease of development. As such, it is plotted
on a paper roll 610mm wide, resulting in an environment
(including perimeter space) of approximately 610mm by
949mm. The grid lines are black on a white background
and so can be sensed by reflected infrared light, as this
is a common sensing ability among mobile robots. The
grid is illustrated in Figure 1. Thus a robot using a line-
following approach can maintain its course and, by sensing
the junctions and keeping track of its orientation, simply
increments, or decrements coordinate variables as it traverses
the grid. This then is our navigation scheme using nothing
more complex than a small array of optical sensors and a
few bytes of local memory.

2) Behaviour: The model AGV’s behaviour is generated
by four layers of control. This is illustrated in Figure 2.
From the point of view of its hierarchy, that is from the low-
est level of sensory-motor control and reflexive behaviour
through to its top-level task description, this architecture
may be regarded as inspired by the subsumption architec-
ture of Brooks [14]. However, an important distinction is
that the levels of our control scheme are not competing

Figure 1. The navigation grid layout for this work, showing track spacing
and width in mm, together with zone identifers Z01 to Z24. Zone identifier
positions relative to points of the compass are also shown.

Figure 2. The layered control of our model AGV.

behaviours running asynchronously with their own sensor-
actuator loops, but are complimentary to the top-most task,
with sensory-motor links at the basal level.

C. Platform

The platform chosen for building the AGV model is the
very low-cost desktop Pololu 3Pi robot4. It is based upon
the Atmel 328P microcontroller and is equipped with optical
sensors and onboard battery power supply as standard.

1) Robot Model Interfacing Considerations: In order to
turn this base unit into the model, a low-power BlueTooth
BlueSMiRF5 modem is added for communication, together
with a Force Sensitive Resistor (FSR)6 for detecting the
presence of a load, and a normally-closed (NC) microswitch
for detecting collisions. As customising a small mobile robot
with limited onboard I/O capacity for this kind of application
can be problematic, a little lateral thinking was needed in the
approach to interfacing. A brief description of the solution

4https://www.pololu.com/docs/pdf/0J21/3pi.pdf
5https://www.sparkfun.com/products/12577
6http://www.digikey.co.uk/product-search/en?mpart=30-

81794vendor=1027

Figure 3. Hardware addition to the Pololu 3Pi for the AGV model.

is offered here in the event it is helpful for replication of
this work.

The 3Pi robot has a single unused Analogue to Digital
Converter (ADC) input port designated ADC77; the remain-
ing I/O being occupied with the robot’s reflective infrared
sensors, battery voltage sensing, user option switches, motor
drive and LCD display. As both load and collision sensors
are required for this application, it is necessary to perform
both functions using this single free analogue input. The
circuit diagram of the solution together with communication
module connections is given in Figure 3.

Under normal circumstances the microswitch is closed,
dropping VCC (5V) across the potential divider formed by
the resistors and the FSR. However, if during its movement
across the navigation grid the AGV runs into an obstruction,
the microswitch is operated, opening the contacts and thus
the voltage presented at ADC7 is by way of the FSR and
parallel 10K, acting as a pull-down resistor, giving 0V.
Importantly, the resistance value of 10K is chosen to be
in line with Atmel’s requirement that the . . . ADC module
is optimized for analog signals with an output impedance of
10k or less. If such a source is used then the sampling time
will be negligible. 8(Page 244)

With no loading the resistance of the FSR is so high
that the potential divider effectively presents 2.5V to ADC7.
However, under load conditions the FSR value can fall to
almost 1K. This means ADC7 will be presented with a
voltage range of around 0.5V to 2.5V for varying loads on
the AGV. With the analogue to digital converter set to 10-bit
operation, a zero load naturally results in a decimal value
of around 512. Initial tests with a plastic weight resulted
in a value of around 412, whereas a heavier metallic weight
gave a value of around 319. Operating the microswitch drops
the value significantly below that for any realistic load the
AGV may carry, approaching zero. Thus a software routine
sensitive to this range of values can determine load type or
the presence of an obstacle. The AGV model is shown in
Figure 4.

2) Control layers: With reference to Figure 2, layer zero
is the lowest level of control in the AGV model. Its functions

7https://www.pololu.com/file/0J119/3pi-schematic.pdf
8http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-

atmega48a-48pa-88a-88pa-168a-168pa-328-328p datasheet complete.pdf

Figure 4. Automatic Guided Vehicle model based upon the Pololu 3Pi
robot. The positions of reflective infrared line sensors 0-4 are shown,
together with bump switch, BlueTooth modem, Force Sensitive Resistor
and LCD display.

Table I
LAYER ZERO CONTROL

Layer 0 control Description
Collision-detected True if ADC7 V alue < 200

At-line True if IR sensor 2 detects line
At-junction True if IR sensors 0 and 4 detect line

Loaded True if 500 > ADC7 V alue > 200
Stop Stops motors

Run-motors Enables motors if no collision
Turn, Forwards, Backwards Run-motor commands

(Table I) remove transients in sensor readings and thresholds
the result, detects a grid-line and junction, determines the
load status, detects an obstacle and operates the motors.
Layer one functions (Table II) use sensory-motor feedback
through the robot’s environment using layer zero functions
to perform fine-positioning of the vehicle relative to the grid
lines and junctions. Layer two functions (Table III) control
vehicle manoeuvres. These are locked to the navigational
grid junctions and are formed from sequences of layer one
and layer two functions.

Finally, layer three is the highest level of control and holds
a description of the current job assigned to the robot. As
such it is a Finite State Machine (FSM) (e.g., [15]) descrip-
tion whose states are associated with layer two functions.
FSM State transitions are made on successful completion
of layer 2 functions resulting in meeting a waypoint in
the environment or collection/delivery of a load. This is

Table II
LAYER ONE CONTROL

Layer 1 control Description
Turn-off-line Turn until At-line False

Turn-onto-line Turn until At-line True
Move-off-junction Forwards until At-junction False
Move-on-junction Forwards until At-junction True

Backup-from-junction Backwards until At-junction False
Line-follow Line-follow forwards

Reverse-line-follow Line-follow backwards
Pick-up-load Wait until Loaded True
Drop-off-load Wait until Loaded False

Table III
LAYER TWO CONTROL

Layer 2 control Description
Move-to-line

1) Move-off-junction
2) Line-follow
3) Move-on-junction
4) Update-XY

Backup-to-previous-junction
1) Backup-from-junction
2) Reverse-line-follow
3) Update-XY

Turn-to-line
1) Turn-off-line
2) Turn-onto-line

Grid-right-turn
1) Turn-to-line (skid right)
2) Update-direction
3) Move-to-line

Grid-left-turn
1) Turn-to-line (skid left)
2) Update-direction
3) Move-to-line

Grid-about-face
1) Backup-from-junction
2) Turn-to-line (on-axis 180o)
3) Update-direction
4) Move-to-line

Pick-up
1) Stop
2) Pick-up-load

Drop-off
1) Stop
2) Drop-off-load

illustrated in Figure 5. Thus by defining the FSM’s states and
transitions, a route can be defined for the AGV across the
factory floor in pursuance of its allocated job. Importantly,
on successful completion of each vehicle manoeuvre, the
robot sends a message to supervisory control. In the event
it collides with an object in its environment, the robot
stops what it is doing and executes a reflexive behaviour of
reversing back to the preceding junction on the navigational
grid and stopping. This manoeuvre occurs in layer two
of the control hierarchy. A message reporting this is also

Figure 5. Transition to state n+1 on completion of layer 2 function for
state n.

sent across the communication link with supervisory control
signalling a problem has occurred.

VI. MALWARE

Morris and Gao [16] point out that a cyber criminal . . .
. . . can use command injection attacks to over-

write ladder logic, C code which in turn can
result in . . . interruption [of] process control [and]
interruption of device communications . . .

Assuming a vulnerability in a target system is available to
leverage, several questions need to be answered prior to
creating the malware. For the scenario in this work these are:
What type of weapon to create, how to trigger the attack,
what payload to deploy and how to implement it?

A. Type

What kind of malware is useful for attacking a cyber-
physical system? Unless the attack is an act of terrorism
where the perpetrator’s identity is needed to be known, it
is desirable to have a weapon that stays hidden and then
activates some time after insertion into the target is complete.
Importantly, this delay also allows the attacker to infect
more physical devices before the attack occurs. Hence, this
approach minimises any trace of who the aggressor is, and
can also be the ideal weapon of choice for a disgruntled
employee servicing industrial control systems.

Arguably, the scenario in this work is suitable for the
application of a logic bomb, which is . . .

. . . a routine or set of routines that are activated
when a particular set of conditions is met (for ex-
ample, the nth time the program is executed), and
may be a component of a virus or Trojan. A logic
bomb might also be inserted into a legitimate pro-
gram as a precursor to blackmail, or pre-emptive
revenge in anticipation of dismissal, or with some
sort of backdoor functionality.[17](Page 100)

B. Trigger

As the malware is to be inserted into the control system of
a mobile robot, there are various alternatives available to the
author when choosing the trigger. For example, the charge
level in the battery, the size of the job loaded in the memory,
the location of the robot in its environment or indeed the

step currently being executed. For this work a combination
of the last two of these possibilities has been chosen as the
basis of a trigger: On entering a location within the factory
environment, identify a forthcoming step in the current job
to deploy the payload.

C. Payload

With the trigger decided upon, how much trouble should
this malware cause? This is the function of the payload.
For this work the payload needs to be capable of demon-
strating a significant level of disruption it would cause in
a manufacturing plant, while also being convenient to work
with from an experimental perspective. Hence, for repeating
experiments it is useful for the AGV model to largely be able
to recover from payload deployment, whilst also requiring
action from supervisory control to get the production line
back in service.

The payload’s actions decided upon for this work are thus
as follows:

• Stop moving.
• Erase job memory.
• Break communication with supervisory control for a

fixed period of time.

D. Implementation

How can all this be implemented? In order to simulate
injection of malware into the model AGV, an appropriate
level of abstraction is used by always having it present in
the AGV source code. In this work, the logic-bomb is located
within layer 3 of the control system.

1) Placing the Malware: The malware is positioned in
the code used to send acknowledgement of a successful layer
two manoeuvre to supervisory control. For example, within
the switch block of the C source code (e.g., [18]) used for
selecting the control function move to line(), there is a call
to the display data() routine that outputs AGV coordinates
and orientation, together with job state to LCD display as
well as sending messages to supervisory control:

move ok f lag = m o v e t o l i n e () ;
i f (move ok f lag)

d i s p l a y d a t a () ;
break ;

Thus, on successful completion of move to line(), the dis-
play data() routine is called to inform supervisory control.
This in turn calls isolate(), and is the ’malware’.

2) Trigger: Within isolate() is a test that monitors the
AGV navigation variables world X and world Y that give
the robot’s position within the factory navigation grid.
Once these match a given pair of values, a random delay
states to fault is calculated. This is simply an offset rela-
tive to the current state of the FSM for malware payload
activation.

i f (world X== f a u l t X && world Y== f a u l t Y) {
i f (f a u l t f l a g && ! f a u l t t r i g g e r e d) {

r a n g e = num s ta t e s−s y s t e m s t a t e ;
i f (range >1){

s t a t e s t o f a u l t = 1+ rand () %(range −1) ;
f a u l t t r i g g e r e d = TRUE ;
}
}
}

And so, once the malware has been triggered, states to fault
counts down with every state transition. On reaching zero,
the payload is activated.

i f (f a u l t t r i g g e r e d && s t a t e s t o f a u l t == 0) {

/ / Malware Payload
:
:
}

3) Payload: The malware payload carries out three dis-
ruptive acts: stopping the AGV motors, erasing the job being
executed and breaking communications with supervisory
control.

/ / Malware Payload
:
a l l s t o p () ; / / s t o p d r i v e s
s y s t e m s t a t e =0; / / l o s e FSM s t a t e
c l e a r p r o g r a m () ; / / e r a s e j o b
:
d e l a y (2 6 0 0 0) ; / / b reak comms
:
s t a t e s t o f a u l t = −1; / / r eady n e x t a t t a c k
f a u l t t r i g g e r e d = FALSE ;
:

VII. EVALUATION WITH AN EXAMPLE

To illustrate this with an example, the layout shown in
Figure 1 is used. A job is sent to AGVC and is to collect
goods from Z24 (stores) and deliver to Z17 (a work cell’s
materials input). An AGV is free for work, and is parked
at Z21 (0,5), facing West. A route Z21, Z22, Z23, Z24,
Z20, Z19, Z18, Z17 is generated to carry out the job. Using
this route together with the vehicle starting position and
orientation, an intermediate representation of a new state
machine description is generated. For sake of clarity this
describes a step-by-step traversal of the route as opposed to
a more efficient machine that eliminates states 2, 5 and 7,
and is shown in Table IV. This description is then sent to
the AGV over BlueTooth, where it is evaluated as the FSM,
shown in Figure 6.

A. Stepping through the Scenario

For this example, the trigger point set to Z20 (3,4). The
new FSM program is loaded, the AGV starts its FSM and
control is passed to state 0, causing the vehicle to turn about
its axis and move to Z22 (1,5). On completion of this action
control is passed to state 1.

Table IV
THE INTERMEDIATE STATE MACHINE DESCRIPTION GENERATED BY THE

AGVC.

State X Y Layer 2 function
00 0 5 Grid-about-face
01 1 5 Move-to-line
02 2 5 Move-to-line
03 3 5 Pick-up
04 3 5 Grid-right-turn
05 3 4 Grid-right-turn
06 2 4 Move-to-line
07 1 4 Move-to-line
08 0 4 Drop-off
09 0 4 End

Figure 6. An example FSM.

State 1 causes the vehicle to move forward to Z23 (2,5).
This progression through the states with completion of Layer
2 functions continue until state 3 is reached. The AGV waits
for an object to be presented on its platform. This deforms
the FSR, is detected by software at Layer 0 and, via Layer
1, completes the Pick-up function in Layer 2.

Eventually, state 4 goes active and causes the vehicle
to turn right. On successful completion of this manoeuvre,
the AGV sends a message to supervisory control via the
display data() routine. Hence the malware is called and
checks the trigger point against the robot’s location. There
is a match and so a random states to fault value of 1 is
generated.

Control is passed to state 5 and the AGV turns right with
its load. On completion of this manoeuvre the robot is at Z19
(2,4) and states to fault is decremented to zero. Control is
passed to state 6.

The robot moves forward and a message is sent to
supervisory control indicating a successful manoeuvre. The
malware detects the countdown has hit zero and the payload
is deployed.

The robot halts in its tracks, has its FSM erased and enters
a long wait state and so cannot service communication re-
quests. This AGV is now isolated from supervisory control,
has lost its task description, is carrying a load it cannot
deliver and is blocking a track in the factory. Chaos.

This is the starting point in the scenario for research of
counter strategies, intended as part of supervisory control,
that attempt automatic recovery of the lost AGV, thus
delivering its cargo and keeping the plant running without
human intervention. As such, our early work in this area is
given in [19].

In the context of triggerable malware such as a logic
bomb, it is important that any such counter strategy learn
through experience, eventually preventing further attack.
This knowledge (”immunisation”) can then be given to
other such facilities, preventing them from suffering similar
disruption.

B. How does this compare with other models of AGV
failure?

Davies (1986) [20] observes . . .
Breakdowns of any resource in a simulation

model, whether it is a machine, worker, or material
handling device, are most often treated by creating
submodels which schedule breakdown events to
occur according to random distribution. In the
AGV model, breakdowns are accomplished by
halting the vehicle at the end of its transport.

However, the reason for AGV failure is non-specific.
Importantly, had this work been confined to simulation

alone, then additional events such as malfunction due to
premature battery discharge or wearing out of the AGV
guide-path (the navigation grid), would not necessarily have

been considered for inclusion in the model. Indeed, these
two events are mentioned as they occurred after running
the AGV model robots at length and were never originally
planned as part of a set of scenarios! Thus, such real-
world reasons for a robot failing to complete its job, over
and above any malware influence, would possibly have
been missed in designing a simulation. This is significant
because development of supervisory control systems that
create counter strategies for dealing with AGV problems
must be able to differentiate between malicious attacks and
more conventional operational situations, without confusing
the two.

VIII. CONCLUSIONS

This paper has described the development of a novel,
physically grounded model of an automated guided vehicle
for investigation of cyber attack scenarios. As such, the
malware model resides in the top-most level of a layered
subordinate control system. Importantly, being a config-
urable part of the AGV source code offers the experimenter
full control over the underlying dynamics of infected AGVs,
and thus allows any emergent phenomena in the behaviour
of the system as a whole to be tied back to this source.

This work is intended to be used in two ways: Firstly,
further development of the AGV scenario will be explored to
aid research of adaptive supervisory control systems. These
systems will monitor multiple and heterogeneous subordi-
nate control, aiming for automated resolution of disruption
caused by a cyber attack across a model production site. Sec-
ondly, this will lead into an investigation into the application
of these techniques to real-world plant and machinery.

REFERENCES

[1] L. Schulze, S. Behling, and S. Buhrs, “Automated guided ve-
hicle systems: a driver for increased business performance,” in
Proceedings of International Multi Conference of Engineers
and Computer Scientists 2008 (IMECS 2008, 2008, pp. 1275–
1280.

[2] E. Gent, “Successful hacks and cyber attacks commonly
result of human error,” In Engineering and Technology
Magazine, April 2015. [Online]. Available: http://eandt.
theiet.org/news/2015/apr/threat-reports.cfm

[3] E. Ackerman, “Chinese unmanned factory replaces
600 humans with 60 robots,” In IEEE Spectrum
Magazine, August 2015. [Online]. Available:
http://spectrum.ieee.org/automaton/robotics/industrial-robots/
chinese-unmanned-factory-replaces-humans-with-robots

[4] U. Nehmzow, Mobile robotics: a practical introduction.
Springer, 2003.

[5] R. A. Brooks, “Elephants don’t play chess,” Robotics and
Autonomous Systems, vol. 6, pp. 3–15, 1990.

[6] T. Le-Anh and M. D. Koster, “A review of design and control
of automated guided vehicle systems,” ”European Journal of
Operational Research”, vol. 171, no. 1, pp. 1 – 23, 2006.

[7] R. G. Rosandich, R. R. Lindeke, and J. Berg, “Developing
an automatic guided vehicle for small to medium sized
enterprises,” ”Progress in Material Handling Research”, pp.
461 – 470, 2002.

[8] Z. Chen, S. Member, and C. Ji, “Spatial-temporal modeling
of malware propagation in networks,” IEEE Transactions on
Neural Networks, pp. 1291–1303, 2005.

[9] M. Garetto and W. Gong, “Modeling malware spreading
dynamics,” in In Proceedings of IEEE INFOCOM, 2003, pp.
1869–1879.

[10] J. Petit and S. E. Shladover, “Potential cyberattacks on
automated vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 546 – 556, 2015.

[11] M. Sharma, “Control classification of automated vehicle
systems,” International Journal of Engineering and Advanced
Technology (IJEAT), vol. 2, 2012.

[12] M. Schneier, R. Bostelman, N. I. of Standards, and
T. U. E. L. I. S. Division. (2015) Literature review
of mobile robots for manufacturing. [Online]. Available:
https://books.google.co.uk/books?id=\ BgFjwEACAAJ

[13] S. Yaghoubi, S. Khalili, R. M. Nezhad, M. R. Kazemi, and
M. Sakhaiifar”, “Designing and methodology of automated
guided vehicle robots/ self guided vehicles systems, future
trends,” International Journal of Research and Reviews in
Applied Sciences, vol. 13, 2012.

[14] R. A. Brooks, “A robust layered control system for a mobile
robot,” ”IEEE Journal of Robotics and Automation”, pp. 14
– 23, 1986.

[15] A. K. Dewdney, The New Turing Omnibus. Palgrave
Macmillan, 2003.

[16] T. H. Morris and W. Gao, “Industrial control system cyber
attacks,” in Proceedings of the 1st International Symposium
for ICS SCADA Cyber Security Research, 2013.

[17] D. Harley, R. Slade, and U. E. Gattiker, Viruses Revealed.
Osbourne/McGraw-Hill, 2001.

[18] B. W. Kernighan and D. M. Ritchie, The C Programming
Language 2nd Edition. Prentice Hall, 1988.

[19] V. Degeler, R. French, and K. Jones, “Combined danger
signal and anomaly-based threat detection in cyber-physical
systems,” in 2nd EAI International Conference on Safety and
Security in Internet of Things (SaSeIoT). EAI, 2015.

[20] J. Wilson, J. Henriksen, and S. Roberts, Eds., Modeling AGV
Systems, 1986.

