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Abstract We perform analysis of public transport data from The Hague, the 
Netherlands, combined from three sources: static network information, automatic 
vehicles location (AVL) and automated fare collection (AFC) data. We highlight the 
effect of bunching swings, and show that this phenomenon can be extracted using 
unsupervised machine learning techniques, namely clustering. We also show the 
correlation of bunching rate with passenger load, and bunching probability patterns 
for working days and weekends. We present the approach for extraction of isolated 
bunching swings formations (BSF) and show different cases of BSFs, some of 
which can persist for a considerable time. We applied our approach to the tram line 
1 of The Hague, and computed and presented four different patterns of BSFs, which 
we name "high passenger load", "whole route", "evening, end of route", "long 
duration". We analyse each bunching swings formation type in detail.  
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1 Introduction 
One of the most important quality aspects of public transport (PT) is service 
reliability, being the match of operations and planning. In PT systems worldwide, 
passengers consider this aspect both important and yet not sufficient (van Oort 
2014; Diab et al. 2015). An increasing  amount and complexity of data describing 
PT services allows us to better explore the detection methods and analysis of 
different phenomena of PT operations, related to service reliability, e.g. AVL data 
(Hickman 2004) and smartcard data (Pelletier et al. 2011). One such phenomenon is 
the bunching of PT vehicles, which is characterised by uneven deviations of 
headways between vehicles from the designed value. These disturbances are 
magnified over time, until PT vehicles travel in pairs, instead of evenly spaced 
(Pilachowski, 2009). The cause of this phenomenon is described as follows: the 
delay of a vehicle compared to its expected schedule (and resulting increase of 
headway with the previous vehicle) causes more passengers to gather at PT stops, 
which increases the vehicle’s dwell times, which in turn increases the delay of that 
vehicle even more. The next vehicle, even though starting according to schedule, 
has fewer passengers to collect, therefore is able to travel faster, further decreasing 
the headway with the delayed vehicle, and so forth.  
 
The bunching phenomenon was first identified by Newell and Potts (1964) and has 
been extensively studied by many scholars in the past decades. For instance, 
Mandelzys and Hellinga (2010) propose a method for identifying the causes of 
performance issues in bus schedule adherence using both Automatic Vehicle 
Location (AVL) and Automatic Passenger Count (APC) data. Fonzone et al. (2015) 
conclude that unexpected passenger demands are the root cause of bunching. Sun 
and Schmöcker (2017) model the choice behavior of passengers when there is more 
than one bus serving a stop. Yu et al. (2016) show that supervised learning 
techniques such as Support Vector Machines can be employed to predict bus 
headways and bunching by using the information, available from transit smart cards. 
When it comes to the solutions to this problem, many have attempted to develop 
various control strategies for the vehicle headway, such as Daganzo (2009), 
Daganzo and Pilachowski (2011), Bartholdi and Eisenstein (2012), Moreira-Matias 
et al. (2016), Varga et al. (2018), etc. Bunching has been shown to severely 
negatively affect the operations of PT (Osuna & Newell, 1972; Chapman & Michel, 
1978) and different techniques have been proposed designed to deal with the 
adverse effects of bunching (Daganzo, 2009; Feng & Figliozzi, 2011; Moreira-
Matias et al., 2016). Most strategies revolve around holding and headway control, 
e.g. Zhang & Lo (2018) proposed two-way-looking self-equalizing headway 
control. Despite the vast research effort that has been spent on this topic, not many 
studies are available that investigate bunching (patterns) using real data sets. This 
may be attributed to the scarcity of observations on PT system operations on a 
sufficiently large spatiotemporal scale. This, however, is changing rapidly, with the 
increased data availabilty of (real-time) scheduling, vehicle location and fare 
collection systems. Andres & Nair (2017) propose to use linear regression for data-



 
 

 

driven prediction of headways and use it in combination with the existing dynamic 
holding strategy for corrective control. 
 
To the best of our knowledge, our study is the first attempt to explore and examine 
— by combining these new data sources — bunching patterns on different levels of 
scale (i.e. not only at the level of a vehicle or pairs of vehicles, but also over larger 
spatiotemporal periods for a particular service) using machine learning techniques. 
Specifically, we show that it is possible to extract and detect single instances of 
bunching by using fully unsupervised techniques (clustering). Furthermore, the 
same technique allows us to identify and track how bunching propagates over time, 
and, specifically, to uncover the bunching swings phenomenon, defined as repeating 
patterns of pairs of delayed and bunched vehicles, without ‘normal’ vehicles, which 
are running according to schedule with evenly spaced headways, in between. When 
investigating data, we regularly observed 5 or more pairs of vehicles forming 
bunching swings, without returning to normal scheduled times for nearly two hours 
or even longer. 
  
Our main contribution in this paper is looking at the whole formations of these 
bunching swings, isolated in time and space by periods of normal (i.e. those that 
conform to the schedule) operations. We call these patterns bunching swings 
formations (BSF), and define them as sequences of PT vehicles on the one axis with 
sequences of PT stops on the other axis, where these vehicles are affected by either 
delays or bunching, surrounded by the normal PT operations. The precise formal 
definition of a BSF is given in Section 5. We looked further into the formations of 
bunching swings, and additionally present a way to detect and extract these BSFs 
directly from the PT data. To demonstrate the methods we apply them to a densely 
used tram service in the The Hague area, the Netherlands, and we show that the 
BSFs can be categorised into four distinct types, that differ in passenger load, and in 
spatial and temporal extent. We argue that the presented methods and findings are 
relevant for both operational and tactical planning of PT services.  
 
The paper is outlined as follows. In Section 2, we define our case study and describe 
the data that we used in our analysis. In Section 3, we describe how the clustering 
can be used to extract delayed or bunched situations. In Section 4, we discuss the 
bunching swings phenomenon. Section 5 formally defines bunching swings 
formations, and shows, how BSFs can be extracted, and which parameters can be 
used for finding different types of these formations. Section 6 discusses the results 
of clustering for formation types extraction, and discusses each of four types in 
detail. Finally, Section 7 concludes the paper. 
  
2 Case study and data description 
For this study, we use a dataset containing static and dynamic information for each 
stop of the public transport network in The Hague, the Netherlands, which consists 



 
 

 

of 12 tram lines and 8 bus lines. The dataset covers the period of one month, March 
2015.  
 
The static data includes information about the transportation network, its 
geographical structure, stops, routes, and schedules. It is derived from General 
Transit Feed Specification (GTFS) data. The dynamic data comes from two 
different sources. One is Automatic Vehicle Location (AVL) data (Hickman, 2004; 
van Oort et al., 2015a): which contain actual times of arrival/departure of vehicles, 
headways, delays, etc. Arrival ahead of schedule is represented as a negative value 
of delay. The second type of dynamic data is the Automated Fare Collection (AFC) 
data, also known as Smart Card data (Pelletier et al., 2011; van Oort et al. 2015b), 
which contain the tap-in / tap-out times of personalized smart cards (which are 
extremely prevalent in the Netherlands over other types of payment), and the exact 
vehicles in which these transactions took place. Using the tap-in and tap-out times 
of the smart cards, the passenger load (or occupancy) of a vehicle can be estimated 
with an intricate set of tools presented in Luo et al. (2018). 
 
Main analysis in this paper is performed specifically on tram line number 1. This is 
the longest line in The Hague, having 41 stops; going from the west side of the city 
(Scheveningen, the beach district, nearby the sea) through the city center; continuing 
to the south-east; and then south into the center of the nearby city of Delft. Figure 1 
shows the plan of this line. 
 

 
Fig. 1 Tram line 1 from Scheveningen Noorderstrand to Delft Tanthof. 



 
 

 

 
Important feature of this route is that there is no visible control from the side of the 
operator with regards to the holding patterns (e.g. holding the next vehicle if the first 
one becomes delayed). Therefore, the analysis in the following sections relates to 
the behavior of PT vehicles in an uncontrolled situation. 
 
3 Situation profiles via clustering 
In this section, we apply unsupervised techniques to look for recurring patterns we 
call “situation profiles” in single trips (of PT vehicles). We do this using occupancy 
data combined with automatic vehicle location data.  
 
We prepare the dataset by first removing all time/place/route signifying information. 
This includes time of the day, date, line number, stop ID, trip ID, and so on. The 
reason for removal of this information is that when constructing situation profiles, 
we want to look at traffic conditions, and we want to avoid clustering two situations 
with similar conditions differently just because they occurred on different routes or 
times. The features that we use are therefore all related directly to the traffic 
conditions, and are obtained per every stop on every tram route: 

• dwell – dwell times on stops;  
• delayArr – delay of arrival;  
• load – passenger load;  
• preHw – previous headway; 
• nextHw – next headway. 

 
It has to be noted, that the original dataset contains some missing periods of data, 
which sometimes produce data points, where either previous or next headways are 
unknown. This happens in around 1% of the whole dataset. In order to keep these 
points in our dataset, we use an imputation heuristic to fill the missing values with 
their probable values. In this case, we use the scheduled headway.  
 
Line 1, which we investigated, utilizes two different headways in scheduling. In the 
majority of cases (from 7:00 to 20:00 on weekdays and from 12:00 to 18:00 on 
weekends), the scheduled headway between the vehicles is 10 minutes; however, it 
becomes 15 minutes in the very early and late hours. In order to control for this 
difference in the initial unsupervised investigation, we performed this analysis only 
on vehicles with 10 minutes (600 seconds) scheduled headways. However, further 
analysis in Section 5 will use all vehicles of the line due to its generalised features. 
 
All features are vectorized and normalized, and we perform K-means clustering in 
order to find the situational profiles. The results with different number of clusters 
are shown in Table 1. All values, except passenger load, are reported in seconds. 
 
It can be seen that there are three fundamental types of situations: 
 



 
 

 

1. “Normal” situations: Characterized by average dwell times; low delay (half a 
minute on average); average passenger load; and equal headways with previous and 
next vehicles. 

Table 1 Clustering results with (a) three; (b) four; (c) five clusters.  
(a) Three clusters produce a good distinction between three fundamental types of vehicle 
conditions: normal operation; being late with increased passenger load, being early and 

bunched with a previous vehicle. 

Feature Cluster 1 “Delayed” 
(18.1%) 

Cluster 2 “Normal” 
(59.9%) 

Cluster 3 “Bunched” 
(22.0%) 

dwell 30.6 ± 17 29.1 ± 16 26.6 ± 19 
delayArr 239.6 ± 136 33.5 ± 70 -66.4 ± 104 
load 37.1 ± 24 27.6 ± 19 24.5 ± 17 
preHw 804.1 ± 167 608.2 ± 83 407.7 ± 138 
nextHw 388.5 ± 135 605.6 ± 88 768.8 ± 161 

(b) Four clusters provide a further distinction in “normal” situations (clusters 2 and 3), 
dividing them on “slightly late” and “early”. Delayed (clusters 1) and bunched (cluster 2) 

situations are more pronounced 

Feature Cluster 1 
(10.6%) 

Cluster 2 
(30.2%) 

Cluster 3 
(45.0%) 

Cluster 4 
(14.3%) 

dwell 31.0 ± 17 30.1 ± 17 28.4 ± 16 25.9 ± 19 
delayArr 296.2 ± 137 99.6 ± 79 -2.8 ± 64 -80.2 ± 111 
load 38.5 ± 25 32.0 ± 21 25.8 ± 18 22.7 ± 17 
preHw 850.9 ± 180 674.9 ± 101 567.0 ± 76 355.2 ± 135 
nextHw 323.5 ± 128 537.8 ± 82 650.5 ± 95 794.3 ± 174 

(c) Five clusters further split the situation. Note the last cluster 5, which now shows 
extremely bunched trams, with just over 2 minutes headway time on average and very low 

passenger load. 

Feature Cluster 1 
(7.7%) 

Cluster 2 
(18.6%) 

Cluster 3 
(41.1%) 

Cluster 4 
(24.3%) 

Cluster 5 
(8.3%) 

dwell 30.5 ± 16 30.6 ± 17 28.9 ± 16 28.0 ± 17 24.9 ± 20 
delayArr 327.6 ± 138 146.1 ± 90 31.5 ± 56 -35.7 ± 84 -93.6 ± 116 
load 39.1 ± 26 34.9 ± 22 26.4 ± 19 27.3 ± 18 19.8 ± 15 
preHw 874.6 ± 181 721.8 ± 124 609.6 ± 69 508.4 ± 88 288.3 ± 120 
nextHw 283.7 ± 119 495.7 ± 90 602.2 ± 73 711.6 ± 122 815.6 ± 188 
 
2. “Delayed” situations: Increased dwell times; considerable delay; considerably 
increased passenger load; the headway with previous vehicle is considerably larger 
than the headway with the next one. 
 
3. “Bunched/early” situations: Decreased dwell times; no delay or early arrival; 
low to medium passenger load; the headway with previous vehicle is considerable 
smaller than the headway with the next one. 
 
An interesting effect occurs when changing the number of clusters. When 
comparing Table 1(a), (b) and (c) (with 3,4, and 5 clusters, respectively) it can be 
seen that the three profiles described above are always created. However, the bigger 
the number of clusters, the more fine grained these clusters are, further 
discriminating between low delays/high delays, or low passenger load to medium 
passenger load. These results suggest that bunching has the most pronounced effect 



 
 

 

on the difference in the situation profiles, and led us to further investigate this 
phenomenon. 
 
4 The bunching swings phenomenon 
In this section, we zoom out and investigate the larger spatiotemporal context in 
which, particularly, bunching occurrences take place. Further in this paper, we use 
clustering of points with four clusters, which are shown in Table 1-b. We combine 
two middle clusters (clusters 2 and 3) into one “normal” cluster, which now contains 
about 80% of all situations, while marking cluster 1 as “delayed”, and cluster 4 as 
“bunched”. 
 

 
Fig. 2 Clustering results with observed “bunching swings” (Line 1, March 1, Sunday). 

 
An example of such larger scale tram operations can be seen in Figure 2, which 
represents the whole day of operations of The Hague’s tram line 1 on Sunday, the 
1st of March, 2015. In this and the following figures, red-green line represents AVL 
routes, with the colour matching the actual passenger load (green is low, red is 
high). Clusters are marked with green cross (normal), black square (delayed), blue 
circle (bunched). Every line represents a trip of a single tram, in time (x-axis) and 
space (y-axis, representing stops). The line varies its colour depending on the 
relative occupancy rate of the tram. The markers on stops indicate to which situation 
cluster this particular event (a tram arriving, serving and leaving a stop) belongs, 
with green crosses representing the normal situation, black cubes – a “delayed” 
situation, blue circles – a “bunched” situation. 
 
 



 
 

 

 
(a) Case of several consecutive bunching swings. (Line 1, March 20) 

 

 
(b) Case of single bunching swings. (Line 9, March 4) 

Fig. 3 Different cases of bunching swings. Pale blue line represents expected schedule. 
Clusters are marked with green cross (normal), black square (delayed), blue circle 

(bunched). 
 
In Figure 2 a clear phenomenon of bunching swings can be observed. We define it 
as follows: 
 
Bunching swings is the phenomenon of several consecutive PT vehicles in a row 
alternating between “delayed” and “bunched” states, not returning to a “normal” 
state. 
  
A more close up and very clearly marked case of such bunching swings can be 
observed in Figure 3-a, from line 1 on March 20. One tram (that left <11:00) got 



 
 

 

delayed at a stop (nr. 25) for a considerable time, with 5 pairs of trams afterwards 
alternating between being delayed with a high number of passengers and being early 
with a low number of passengers, a situation that lasted for almost two hours. It can 
also be seen how bunching got progressively worse over time (e.g. each next pair of 
vehicles were closer to each other than the previous pair), before being diminished 
around 13:30 and returning to more or less normal schedule after this.  Figure 3-b 
shows a different kind of situation, from line 9 on March 4, with three separate 
cases of a single swing, where two times swings are started by a delayed tram, and 
one time by an early tram. In these cases there is one vehicle that clearly got out of 
its schedule, which caused some issues to the neighbouring vehicles, but did not 
affect the route efficiency in the long term. 
 
The clustering allows us to construct patterns of bunching probability, as shown in 
Figure 4. We calculate the bunching probability as a percentage of trams clustered 
into “delayed” or “bunched” clusters, compared to all trams during the same period. 
Bunching patterns differ noticeably between working days and weekends. As can be 
seen, weekdays have two clear peaks of bunching rate increase: a huge one in the 
morning, and a more moderate one in the evening. Weekends have a considerable 
increase in bunching rate in the middle of the day. In all cases, bunching is very low 
to almost non-existent at the beginning of the route, but steadily increases during the 
route, and is at its heaviest by the end of the route. 
   

 
Fig. 4 Probability of bunching, Line 1. Bunching patterns are different on working 

days and weekends. 
 
5 Bunching swings formations 
We now look in detail at the different types of consecutive bunching swings 
formations, such as those that are shown in Figure 3. The formation as a whole 
represents a tightly interlinked situation, where early schedule irregularities may be 
still having an effect on bunching/delays and uneven passenger distribution two or 



 
 

 

more hours later. Therefore, understanding the types of formations and conditions, 
under which they occur, leads to a better anticipation of how a situation will evolve. 
 
Before we dig deeper into the analysis of bunching formations, we want to define 
preсisely, what a bunching swings formation is. We define it as follows: 
 
A bunching swings formation (BSF) is a consecutive sequence of public transport 
vehicles each serving a consecutive sequence of stops (a part of the PT route), in 
which all or majority of vehicles are either being delayed or being bunched 
compared to the previous vehicle on the corresponding affected parts of the route, 
such that this formation is isolated and surrounded in space (PT stops) and time 
(consecutive vehicles on route) by the "normal" operations of PT vehicles, e.g. 
operations according to schedule. 
 
We perform the following steps to analyse BSFs. First, we extract the linked 
formations and look at each formation separately. Then, we extract important 
features of each formation, in order to be able to cluster them by the formation type. 
In the ensuing two subsections we describe each step in detail. 
 
5.1 Formations extraction 
Each day there are usually several BSFs occurring; therefore, we need to be precise 
when extracting a single interlinked formation, to avoid combining into one 
formation two or more separate bunching swings occurrences. To this end, we are 
not interested in cases of a single tram being delayed/early, unless it is followed by a 
discrepancy with the schedule in the following trips. Therefore, we only look at 
formations that have at least two bunched/delayed trips (a single bunching swing) or 
more. 
 
More precisely, we are interested only in the part of the route where bunching 
occurs. Earlier stops in the route should be excluded from the formation. Although it 
is a common situation that bunching, once it occurs, continues until the end of a 
particular trip, it also happens that the delay or early arrival are resolved en-route. 
We will later see that some bunching cases are interesting due to the fact that they 
happen in the middle of the route with a potential to be resolved during further 
stops. 
 
During our data analysis we observed some situations, where one of the trams in the 
middle of a bunching swings pattern runs on schedule, whereas the trams before it 
and after it are both involved in a bunching pattern. This situation can be treated in 
two different ways: (1) as a two different BSFs before and after the tram in question, 
or (2) as a single BSF with the tram involved in-between bunched/delayed trams 
being regarded as participating in the formation as well. There are arguments for 
both types of treatment, and in our analysis we looked at formation clustering with 
both of these types, and we found that it does alter further clustering results. Further 



 
 

 

in this paper, we report the results based on (2), treating such situation as a single 
BSF. The reason is that, based on the situations that we looked at, such bunching 
swings usually represent a single unfolding situation, see, for example, Figure 7 (4th 
sub-figure) and Figure 10. However, if at least two consecutive trams run on 
schedule in between observed bunching swings, this does cause the creation of two 
different bunching swings formations. 
 
The algorithm for detecting bunching swings formation reads as follows: 
1. Regard each line and direction separately. Extract a collection of data points 

for the line and direction in question. Data points are represented by a list of 
AVL locations at each stop (missing information can be handled). Each data 
point should contain the following information: date, line number, line 
direction, stop ID, stop order in the route sequence, trip ID, timestamp, dwell 
time on a stop, delay of arrival in time units, passenger load, headway to the 
previous vehicle, headway to the next vehicle, previous trip ID, next trip ID 

2. Perform clustering of data points as defined in Section 3. Each data point is 
assigned a particular cluster type (“delayed” / “normal” / “bunched”). 

3. During BSF extraction, regard each day separately. Extract all data points, 
related to this line, direction, date into a current dataset. 

4. While there exists an un-investigated “delayed” or “bunched” point in the 
current dataset: 
4.1. Create a new unique potential BSF ID, and put the point in question into 

the queue of points for this ID. 
4.2. Take the next point from the queue for the current potential BSF, and 

mark it as investigated. Extract neighbours of this data point: neighbours 
are data points that correspond both to the neighbouring trips (the trip in 
question, the previous trip or the next trip) and neighbouring stops (the 
stop in question and the certain number of stops before and after this stop, 
we used 3 stops before and after in our analysis). If at least 20% of the 
neighbouring data points belong to non-normal clusters, mark the current 
data point with the unique current “potential BSF” marker and add all its 
still un-investigated neighbours to the queue. Remove investigated point 
from the queue, and repeat this full step, while the queue is not empty. 

4.3. Extract all points marked with the current potential BSF marker, and 
perform the checks on the current potential BSF. Remove leading and 
trailing normal trips. Split the BSF into two or more, if it contains at least 
2 “normal” trips in between (“normal” trips are those that have less than 
the predefined threshold of non-normal AVL points, in our case: 3). 
Check that it contains at least the minimum number of trips (in our case: 
2). If all checks pass, a new BSF is detected and added to the list of BSFs. 



 
 

 

 

 

Fig. 5 Three separate bunching swings formations, extracted for Line 1 on 
March 1, marked with blue, red and purple colors. 

We can now analyse the data of different days in terms of bunching swings 
formations, rather than separate bunching occurrences. For example, after 
application of this algorithm to Line 1 on March 1, the occurrences of bunching 
swings that we visualised earlier in Figure 2 can now be represented in BSFs, as 
shown in Figure 5. Three different BSFs were extracted, each independent from 
others in space and time, with varying duration, severity, affected stops and other 
parameters. In this figure, unlike in previous and follow up figures, we use blue, red 
and purple colors to visualise distinct extracted BSFs on one figure; green still 
marks the normal situations. Note, that there are also some short-lived occurrences 
of bunching (marked with green), that do not form BSFs due to normally having 
only one affected vehicle. Therefore the BSF detection algorithm will correctly 
ignore them. 
 
5.2 Formations clustering and profiling 
Once we have separate bunching swings formations extracted, we carefully examine 
their parameters. In this analysis, we use the following parameters: 
Bunching Swings Formations Parameters: 
1. Average passenger load – we average passenger load for the whole formation, 

mainly due to the fact that in two consecutive trams in a formation, one being 
bunched and one being early, the load can differ significantly. 

2. Number of trips involved – the total number of trams that were affected 
3. Total duration – Total duration, in hours, of the bunching swings occurrence. 

It has to be noted that this variable is considerably correlated with the number 



 
 

 

of trips involved (Pearson’s r=0.96 for the line 1 that we used in our analysis; 
however, it will be different for other lines depending on variations in planned 
headways density over time and on different days), so any one of them can be 
used in further analysis, depending on the preference. In our case, we used them 
together and each separately and did not find any meaningful difference in 
reported results. 

4. Average starting stop – when in the sequence of stops the bunching effect 
starts to occur. 

5. Average length in stops – how long during the route the bunching effect lasts.  
6. Time of day when the bunching swings formation starts 
7. Day type – work day or weekend 
8. Lasts until route end? – yes or no, depending on whether bunching is resolved 

mid-route, or lasts until the end of the route. 
 
Once we extract these factors from each detected bunching swings formation, we 
can use them to perform a second layer of clustering, in order to combine 
formations by type.  
 
One of the main concerns when doing this type of analysis, is the inability to 
combine bunching swings from different lines into one common type extraction. 
The geographical differences of lines, different stops being a part of central/busy 
areas, different schedule and frequency, different coverage by neighbouring lines 
providing feasible alternatives for passengers to avoid taking delayed trams, and 
many other external factors can all influence the bunching swings formations and 
evolution differently. In our future research analysis, it is our goal to add such 
external factors to our dataset and specifically look at differences in BSFs on 
different lines and in different cities. In this paper, however, we control all those 
factors by looking at bunching swings formation types within one line, namely line 
1 in The Hague.   
 
6 Results: exploring bunching swings formations 
 
6.1 Clusters number 
The first question to be asked in the analysis of BSF types, is how to decide on the 
number of clusters. In order to do this, we performed K-means clustering, varying 
the number K of clusters from 2 to 7, and performed the silhoette analysis for each 
K, to visually assess the quality of clusters. The silhoette analysis allows to see, how 
similar the points within the cluster are with the centroid point, and how different 
they are from the points of different clusters (Rousseeuw P. J. 1987). Each point in a 
cluster obtains a silhoette score on a scale [-1, 1], which indicates, how much more 
similar this point is to the points in its own cluster than to the points in different 
clusters. Here, 1.0 indicates complete equality of the point with all points in its own 
cluster, and difference with points in others, while numbers below 0 indicate that the 
assignment of a cluster for this point may have been wrong, as it is more close to the 



 
 

 

points outside of the cluster rather than in its own cluster. With a good cluster 
number, there are no clusters, whose silhoette score is considerably lower than for 
others. 
 
Figure 6 shows the silhoettes for cluster numbers K from 2 to 7, while Figure 7 
shows the average silhoette score obtained for each K. 
 

 
Fig. 6 Silhoettes of bunching formations clusters for K from 2 to 7. 

 
As can be seen, with K = 2 and K = 3, we can get a good separation between 
clusters, but the variability of points inside the clusters does not allow us to have a 
good description of which situations each cluster represents due to common 
occurrences of different situational types of formations being assigned to the same 
cluster. 
 
With K = 5, we have one of the clusters with considerably lower quality than others 
(cluster number 1 in the figure), and the situation stays the same for K = 6 and K = 
7. We did not investigate the number of clusters being larger than 7, since with the 
one month of data a larger number would likely result in overfitted clusters, i.e. 
those representing particular situations of this exact time frame rather than general 
formation patterns. 
 
K = 4 has the best average silhoette score, with no cluster being clearly worse than 
others. Therefore, out of all investigated possibilities, we chose K = 4 as providing 
the best number of clusters. 



 
 

 

 

 
Fig. 7 Average silhoette scores for number of clusters K from 2 to 7.  

The red point marks K = 4, the chosen number of clusters. 
 
6.2 Clustering results 
As described in earlier sections, we detected, extracted, and clustered bunching 
swings formations. In total, we extracted 216 BSF occurrences within one month, 
and clustered them in four different types. You can see the types combined in Table 
2. We highlight in bold the most significant features that distinguish each cluster 
from other clusters and are used to explain the type of BSFs that belong to it. 
 
1. “High passenger load” – The most common type of BSFs and it is specified by 
very high average passenger load for the whole duration of the swings formation. It 
often starts in the middle of the route and more often than other types can be 
experienced on work days. Examples can be seen in Figure 8. It is worth 
mentioning, that although the calculated average starting time of this bunching 
cluster is in the middle of the day, most of the occurrences during work days start 
during the morning peak hours (8:00-9:00), or during the evening peak hours 
(15:00-18:00). Therefore, we conclude that this type of bunching swings formations 
is clearly associated with heavy demand on the public transport route, specifically 
the demand that happens during peak hours. This conclusion is also fully consistent 
with the increased occurrences of this cluster during week days (89%). 
 
2. “Whole route” – Bunching swings formations of this type usually start very 
early in the route and last for the whole duration of the trip. They have average 
number of trips involved and average passenger load. Examples can be seen in 
Figure 9. When looking closely at this cluster, we found that in a bit more than half 
(53%) of all BSFs in this cluster the delay started at the very beginning of the route, 



 
 

 

e.g. the first observable stop (marked as 2 in the stops sequence in the figures) 
already had either delays (most of the times), or the tram left early (the minority of 
the times). This irregularity in the dispatch of trams seems to originate from a 
circular nature of the route, so, given the absence of extra buffer times, the tram that 
arrives late to the last station has to start late its next trip in the opposite direction. In 
the remaining half of the cases, the bunching phenomenon developed very early, 
normally within the first ten stops. 
 

Table 2 Clustering results for bunching swings formation types extraction 

Feature Cluster 1 
(29,2%) 

Cluster 2 
(23,6%)  

Cluster 3 
(22.7%) 

Cluster 4 
(24.5%) 

Average passenger 
load 32.1 ± 10 25.9 ± 9 15.9 ± 6 30.9 ± 8 

Trips involved 3.8 ± 2 4.7 ± 2 3.3 ± 2 15 ± 5 
Duration 50m ± 20m 1h20m ± 30m 50m ± 30m 3h ± 1h 
Average starting stop 21 ± 5 8 ± 4 20 ± 6 15 ± 4 

Time when starts 12h ± 3h 14h ± 4h 20h30m ± 2.5h 12h ± 3h 
Average length in 
stops 18 ± 5 31 ± 5 18 ± 5 25 ± 4 

Day type work 88.9% 
weekend 11.1% 

work 80.4% 
weekend 19.6% 

work 75.5% 
weekend 24.5% 

work 77.3% 
weekend 22.6% 

Until route end Yes 88.9% 
No 11.1% 

Yes 96.1% 
No 3.9% 

Yes 85.7% 
No 14.3% 

Yes 100% 
No 0% 

Explanation 

Very high average 
passenger load; 
Medium length 

during route 
 

Starts very early 
on the route; 
Lasts for the 
whole route 

duration 

Low trips number; 
Evening bunching; 

Starts late in the 
route; 

Very low 
passenger load 

Very long duration 
with many 

consecutive trips; 
Rather high 

average passenger 
load 

Nickname "High passenger 
load" "Whole route" "Evening, end of 

route" "Long duration" 

 
 
3. “Evening, end of route” – This is a somewhat unique formation type in terms of 
many factors involved. First of all, the time of day and the day type when it 
happens: it usually starts late in the evening and can be observed a bit more often on 
weekends. The bunching swings usually start very late in the route, noticeably later 
than for other clusters, but can still be resolved in 14.3% of the cases. However, by 
far the most interesting factor of this cluster is the average passenger load, as it is 
very small, considerably smaller than for other bunching swings formation types. 
And, very important, this number is low even if we consider all trips, not only trips 
that are involved in bunching. On the one hand, this correlates very well with the 
fact, that this type of bunching swings usually happens on evenings and weekends, 
as at these times and days passenger numbers generally are much lower than 
average.  



 
 

 

 
Fig. 8 Examples of bunching swings formations from cluster 1 “High passenger load” 

 

 
Fig. 9 Examples of bunching swings formations from cluster 2 “Whole route” 

 



 
 

 

 
Fig. 10 Examples of bunching swings formations from cluster 3 “Evening late route” 

 

 
Fig. 11 Examples of bunching swings formations from cluster 4 “Long duration” 

 



 
 

 

However, as was shown by previous research works and will be shown in Section 
6.3, the bunching effect in itself correlates considerably with high passenger load. 
The fact that there is a type of bunching swings formations that consistently happen 
with low passenger number is, therefore, very interesting, and deserves further 
investigation into external factors of why this type of bunching swings occurs.  One 
of the plausible explanations lies in the fact that the scheduling during evening and 
weekends already takes into account decreased passenger load, thus assumes faster 
dwell and en-route times, and leaves less margin to mitigate minor delays. Examples 
can be seen in Figure 10. 
 
4. “Long duration” – This formations type contains mainly very long and heavy 
bunching swings occurrences, lasting for a long time with many trips involved. 
Examples can be seen in Figure 11. Passenger load stays rather high for the duration 
of such a formation. Bunching swings of this magnitude have no chance to be 
resolved mid-route, as clearly shown by the fact that exactly 100% of such bunching 
swings formations in this cluster lasted until the end of the route. This is also the 
cluster that is the most likely to have the most extreme occurrences of bunching, i.e. 
two vehicles coming into very close proximity to each other (rather than still being 
apart, but with decreased headway between them). The severity and irregular nature 
of occurrences of this cluster points out at potential external (to the data available in 
our analysis) rather than internal (self-inflicting) cause factors for these severe 
bunching swings formations. That assumption is also consistent with the fact, that 
some bunching swings occurrences are seemingly being fully or partially resolved 
en-route for some vehicles, only to be seen reoccurring again for the next vehicle 
(such examples can be seen in Figure 11). This can be caused by any of the 
numerous external factors, for example, a car traffic jam on a road, which a tram 
may need to follow or cross. In any case, we believe that further analysis and 
potential comparison with more external data sources can be useful for this cluster. 
 
6.3 Passenger load effect on bunching 
 
It has been shown in previous research (Yu et al. 2016) that the number of 
passengers and changing load are one of the culprits of public transport bunching. In 
our analysis we can clearly see some cases of increased passenger load that 
nevertheless do not result in emergence of a bunching pattern, e.g. in Figure 2. 
 
In order to investigate the effect of increased passenger load on a bigger scale, we 
need to analyse the average rate of bunching pattern emergence over time. We look 
at all stops of our dataset, and split the full operations at each stop on periods of 2 
hours. We want to obtain the average passenger load per tram (i.e. all transported 
passengers divided by a number of trams), and the bunching rate (percentage of 
bunched/delayed trams) during these particular periods. 
 
 



 
 

 

 

 
Fig. 12 Bunching rate occurrences 

depending on passenger load 

 
Fig. 13 Histograms of average 

passenger load for (a) high 
(x>0.7); (b) medium (0.3<x≤0.7); 
or (c) low (x≤0.3) bunching rates 

 
Figure 12 shows the combined data of all occurrences of average load (x-axis) vs. 
bunching rate (y-axis) for the whole month for one direction of tram 1. The red line 
shows the average bunching rate depending on average passenger load values. The 
average bunching rate clearly goes up until an average load of about 70 people per 
tram. The Pearson coefficient, which measures the linear dependency between the 
two variables (bunching rate and passenger load) is r=0.88. The Spearman 
coefficient, which measures monotonic, but not necessarily linear, correlation 
between these two variables is ρ=0.86. This clearly shows a high correlation of 
passenger load and bunching. In Figure 13 we split bunching rates on three 
categories: high (rates over 0.7), low (rates lower than 0.3), medium (between 0.3 
and 0.7), and draw histograms of average passenger load for every rate. It can be 
seen that a low bunching rate corresponds to a lower passenger load. 
 
7 Conclusions 
In this paper, we showed that clustering techniques can be used to extract three 
fundamental types of situations in which PT vehicles may be observed (normal, 
delayed or bunched). Using these labels on each line and stop we showed that 
clustering also unravels so-called ‘bunching swings’ phenomena, which sometimes 
last for a considerable time. By varying the number of clusters, we can tune the 
characteristics and severity of the bunching patterns we extract. We also showed a 
clear correlation between passenger load and bunching rate.  Clustering results 
allow us to perform further analysis on bunching swings in an uncontrolled 
environment, e.g. their characteristics and conditions under which the swings return 
to normal or intensify. We showed, how the formations of bunching swings can be 
extracted, and that they in turn can be clustered into four types: "high passenger 
load", "whole route", "evening late route", "long duration”. 
 
These explorative data-driven analyses may hold important benefits for PT planning 
and operations management. First, the techniques demonstrated can support 
detecting smaller scale bunching patterns automatically in large service networks. 



 
 

 

Second, as these smaller scale bunching patterns evolve over time and the network, 
detecting of common bunching swings formations may support the prediction of 
these patterns, which allows operators to take appropriate measures faster, and users 
to be informed better.  
 
In our further research, we plan to investigate to abstract the parameters of bunching 
swings formation from the specific characteristics of a particular line, by 
parameterizing running frequency and other differences in schedule, and by 
including the information about the geographical location and other external 
parameters into the model. The reason why we are looking at the parameterization is 
to be able to combine different lines and routes and analyse them in a uniform 
manner. This includes using relative values (e.g. percentage of delay with respect to 
the planned schedule as opposed to its value in seconds, percentage of a route 
affected, etc.) However, we have to be careful with parameterization, because some 
of the features still affect the outcome in absolute values, e.g. we are not only 
interested in the percentage of actual passenger load with respect to the average load 
on a line, but we are also interested in the absolute number of people to 
embark/disembark, since that affect the dwell time. Geographical parameters of the 
stops are also important, e.g. if a stop is in the suburb, business neighbourhood or 
the city center, and what are the distances between consecutive stops. 
 
This analysis can be useful in control strategies. In particular, we aim to use this 
information to look at how the evolution of bunching swings formation can be 
predicted in real time. When processing real-time information, the onset of a 
bunching swings formation can be detected as early as with the second or third 
vehicle. The initial features (severity of delay, passenger load, etc.) can then be 
extracted and updated in real time. These features can be used in predictive machine 
learning algorithms, to predict the duration and the severity of the ongoing bunching 
swings formation. We expect the accuracy of prediction to grow with the total time 
passing since the onset of the bunching swings formation. This is especially 
important for clusters such as cluster 2 (“whole route”) and cluster 4 (“long 
duration”), due to their longer duration and relatively high severity. The biggest 
hurdle is the real-time estimation of the passenger load, as this feature is quite 
important for the analysis of BSFs. The smart cards data that we used for analysis in 
this paper cannot be obtained in real time at the moment, as it is normally gathered 
in batches and becomes available for previous time periods (e.g. the previous day). 
Other passenger load estimation techniques should be employed. Real-time 
detection of ongoing BSFs is important not only for the calculation of its total 
expected duration and severity, but also for the analysis of which particular vehicles 
are likely to become delayed, and which of them are likely to become bunched. 
Since in most cases bunching patterns unfold in pairs, this becomes a somewhat 
straightforward task in the majority of cases. However, there are cases where the 
pattern of going in pairs breaks by having an odd vehicle not following the pattern 
(as was discussed in the step 4.3 of the algorithm in Section 5.1), which should be 



 
 

 

further investigated to increase the prediction accuracy for any control strategy that 
uses the predicted bunched/delayed pattern of a particular vehicle. 
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