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Abstract— To deal with the degraded performance of Global
Navigation Satellite Systems (GNSS) in indoor environments,
Indoor Positioning Systems (IPS) have been developed. The
rapid proliferation of smartphones has led to many IPSs that
utilize positioning technologies that are readily available on
modern smartphones; including Bluetooth Low Energy (BLE).

Using radio signals such as BLE in indoor environments
comes with a number of challenges that can limit the reli-
ability of the signal. In dealing with these challenges, most
existing BLE-based IPSs introduce undesired drawbacks such
as an extensive and fragile calibration phase, strict hardware
requirements, and increases in the system’s complexity. In
this paper, an IPS is developed and evaluated that requires
minimal setup for indoor environments and has a sufficiently
low complexity to be run locally on a modern smartphone. An
extensive exploration of the IPS’ parameters was performed.
The best performing parameter combinations resulted in a
median positioning error of 1.48± 0.283 meters, while using
the log-distance path loss model for distance estimation and
Weighted Centroid Localization with a weight exponent be-
tween 2.0 and 3.5 for position estimation.

I. INTRODUCTION

The Global Positioning System (GPS) alongside other
Global Navigation Satellite Systems (GNSS), such as the
European Union’s Galileo, are a straightforward approach
to provide position estimates to users across the globe. But
these systems are significantly limited in indoor scenarios,
because the GNSS’ signal is not strong enough to penetrate
through solid building materials — degrading the indoor per-
formance of these systems. Consequently, Indoor Positioning
Systems (IPS) have been developed to fill the gap in the
global coverage of satellite-based systems.

The rapid proliferation of smartphones with support for
receiving and transmitting various radio frequency has led
to accessible, low-cost solutions. Additionally, smartphones
are directly linked to their users, making positioning of these
smartphones synonymous to positioning the corresponding
users. This, in turn, enables Internet of Things (IoT) in-
tegration and provides opportunities for market research,
navigation aid and context-aware assistance. While there
are many different technologies that are used for indoor
positioning, only a handful are currently available on mod-
ern smartphones. Notable examples include Bluetooth Low
Energy (BLE)3 and Wi-Fi. This paper aims to take full
advantage of the ubiquity of modern smartphones and their
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3A technology similar to classic Bluetooth but with significantly lower
power consumption

sensing capabilities. In particular, it focuses on using BLE
beacons as reference points to determine the position of a
positioning subject that is carrying a smartphone serving
as a BLE receiver. The main challenge of using radio
signals such as BLE for indoor positioning is dealing with
various effects that compromise the radio signal, decreasing
its reliability. Examples of such effects include complicated
interference patterns, multipath propagation where the signal
reaches the receiver through multiple different paths, and
Non-Line-of-Sight (NLOS) conditions in which the signal
strength is reduced due to obstacles between the transmitter
(beacon) and receiver. In dealing with the challenges of using
BLE, many existing solutions introduce undesired drawbacks
such as requiring an extensive calibration phase (that is
invalidated when the indoor layout changes), strict hardware
requirements, and increases in the system’s complexity [1].
When the system becomes too complex to be run locally
on the smartphone, significant latency between receiving
BLE signals and position estimation can be introduced.
Additionally, offline positioning becomes infeasible.

The main objective of this paper was to create a BLE-
based IPS that avoids these undesired drawbacks. As such
an IPS was developed that requires minimal setup for indoor
environments, has a sufficiently low complexity that position-
ing can be done in real-time — locally on the smartphone —
and that uses inexpensive, readily-available BLE beacons.

In short, the main contributions of this paper are: (1) An
Indoor Positioning System (IPS) with a median positioning
error of about 1.5 meters, that runs locally on a smartphone
and requires minimal setup; (2) An exhaustive exploration
of the parameters involved in the different stages of the IPS
by replaying recorded BLE beacon measurements.

The remainder of the paper is structured as follows. Sec-
tion II contextualizes this paper, and examines recent related
works that also utilize BLE as their primary positioning
technology. Next, in Section III, the implementation of the
proposed IPS is discussed. Section IV discusses the experi-
ment environment, experiment parameters and how they can
be efficiently explored. It also presents the ground truth for
the experiments and introduces ground truth interpolation.
The results of the experiments are presented and discussed
in Section V. Finally, the paper is summarized in Section VI.

II. RELATED WORK

The work by Faragher and Harle [2], written in 2015,
is one of the most influential works on BLE-based indoor
positioning [1]. It provided the first experimental test of
fine-grained BLE positioning using fingerprinting, and it was
the first to show that the use of three advertising channels



to transmit BLE signals leads to severe received signal
strength (RSS) variations. To mitigate these variations when
collecting measurements, they used a time window of RSS
measurements. Window sizes of around 0.5 to 2.0 seconds,
for the measurements window used in the online stage,
provided the best performance with a median positioning
error of about 1 meter.

In 2016, Kriz et al. [3] combined BLE fingerprinting
with Wi-Fi fingerprinting to improve the overall positioning
accuracy. For each technology a separate set of fingerprints
was collected and stored. To evaluate the positioning error, a
leave-one-out cross-validation technique was applied on the
collected fingerprints. From the set of 680 fingerprints, one
was chosen in each iteration and its position was estimated
based on the distance to the others. The results showed a 23%
improvement when BLE beacons were used in addition to
Wi-Fi access points, and yielded a median positioning error
of 0.77 meters. But the mobile application was only capable
of collecting fingerprint measurements, and the system was
only evaluated using fingerprints that were constructed from
a large number of RSSI samples — the 680 measurements
consisted of 115,511 individual RSSI samples, each took 10
seconds to complete.

Later in 2016, Subedi et al. [4] published a paper that fo-
cused on using Weighted Centroid Localization (WCL) with
BLE beacons. The log-distance path loss model estimated the
distances between the receiver and the BLE beacons from the
measured RSSI values. Before the distance was estimated,
the RSSI measurements were filtered using a Kalman filter
on top of a moving average filter. The developed system was
evaluated in a 2.5 meters wide corridor in which a of total
14 beacons were deployed along the walls. The placement
was done in pairs of two at a height of 2.5 meters, with a
distance of 4.5 meters between each pair. The results showed
that, out of the considered weight exponents of 0.5, 1.0,
and 1.5, a weight exponents of 0.5 performed best for their
test environment. The corresponding mean positioning error
was about 1.8 meters when all measurement locations were
averaged.

In 2019, Huang et al. [5] proposed an indoor positioning
method that took advantage of the three separate BLE
advertising channels. To separate the advertising channels,
BLE beacons were configured to only broadcast on a single
channel. For each advertising channel a series of RSS
measurements was performed at distances between 0 and
19.2 meters, with 1.2 meter increments. Using these measure-
ments, three channel-specific distance models were obtained
by fitting the data. Before using these distance models for
distance estimation, the RSS measurements that served as
input to these models were filtered by taking the median
of a sliding window. This data filtering step was performed
for each advertising channel, leading to a separate distance
estimation for each channel. These distance estimations were
combined into a single, final distance estimate. Finally,
weighted trilateration was used to convert the processed
distance estimates into position estimates. The system was
evaluated in two environments; a classroom measuring 5 by

10 meters, and an office room of 9 by 12 meters. In each
environment four beacons were deployed, one at each corner
of the environment. The proposed method achieved median
positioning errors between 1.8 and 2.0 meters.

In 2020, L. Liu et al. [6] published a real-time indoor
positioning method that fused positioning estimates obtained
by using trilateration and fingerprinting. A Pedestrian Dead
Reckoning (PDR) approach was explored, and the results
from both the BLE-based method and the PDR method were
fused using a Kalman filter. The initial position needed in the
PDR method was provided by the BLE-based method. The
BLE-based method used the log-distance path loss model
to convert RSSI measurements to distance estimates. These
distance estimates were fed directly into the trilateration
positioning method, and the corresponding RSSI values were
used in the fingerprinting method. To fuse both methods, a
weighted average of both position estimates was taken. To
evaluate their system, an about 2 meter wide corridor was
used. In total 10 beacons were deployed along the edges
of the corridor. In their experiments two different routes
were traversed, and three experiments were performed per
route. The results of all six experiments for the BLE-based
method were averaged, resulting in a median position error
of 2 meters.

TABLE I: Comparison with previous work

Ref.
Main

positioning
method

Median
error

Environ-
ment BLE Beacons

[2] Fingerprinting 1 m 600 m2 19 (0 dBm, 50
Hz)

[3] Fingerprinting
(Wi-Fi + BLE) 0.77 m 2236 m2 17 (0 dBm, 10

Hz)

[4] WCL 1.8 m ∼ 80 m2 14 (4 dBm,
3.33 Hz)

[5] (Weighted)
Trilateration 1.8 m 50 m2 4 (0 dBm, 10

Hz)

[6] Trilateration 2 m ∼ 90 m2 10 (about -71
dBm, 1 Hz)

Ours Trilateration 1.48 m 61 m2 10 (-59 dBm, 2
Hz)

Whereas previous works mostly rely on a single positioning
method, this paper extensively compares multiple different
positioning methods. Similarly, multiple distance estimation
models are explored, and the log-distance path loss model is
compared to distance estimation models obtained by fitting
experimental data. Furthermore, our work does not rely on
fingerprinting but still has a comparatively low positioning
error while being evaluated in a non-corridor environment
using BLE beacons broadcasting at only 2 Hz.

III. IMPLEMENTATION

Our BLE-based IPS implementation consists of four steps:
RSSI measurements, RSSI filtering, distance estimation, and
positioning. Each step is discussed in a separate subsection.



A. RSSI measurements

In this paper, ten BLE beacons were used. These beacons
use the iBeacon protocol, introduced by Apple in 2013 [7].
In accordance with this protocol, the beacons transmit a
unique identifier and a transmission power (TX power) value
indicating the signal power at a reference distance of 1 m.

To receive the advertising packets broadcast by the BLE
beacons, a smartphone is used. In particular the OnePlus 6 is
used, which supports Bluetooth 5.0 [8]. The scanning interval
between measurements is 500 ms or 2 hertz, the maximum
frequency supported by the available BLE beacons. To get an
idea of the variance of the RSSI, we took 100 measurements
of the RSSI at a static distance of one meter. We did this
for all ten beacons. The resulting average RSSI at one
meter ranged from -54.0 dBm to -57.7 dBm, with standard
deviations between 1.49 dBm and 2.55 dBm.

B. RSSI filtering

The next step is to filter out the variance between the
RSSI measurements previously observed. To do so, a sliding
window of measurements is implemented, essentially acting
as a buffer to store the last n number of measurements. Each
beacon has its own measurements window, as illustrated in
Figure 1. Here, the window size is five (n = 5). A window

Fig. 1: Measurements windows for multiple BLE beacons

size of one (n = 1) means that no RSSI filtering occurs, and
that the variance in the measurements is not reduced. On
the other hand, changes in the RSSI are directly reflected
in the distance estimation. Conversely, if the window size is
too large, changes in the RSSI might have a delayed effect
on the distance estimation, leading to a position estimation
that lags behind on reality. To deal with the variance in the
measurements, three methods to reduce the measurements to
a single value were explored: the mean (average), the median
and the mode. For the mode, if all measurements occur only
once, the median is used as a fallback.

C. Distance estimation

The next step towards indoor positioning is distance es-
timation. To obtain distance estimates from (filtered) RSSI
measurements, signal propagation models are used [9], [10].
These models rely on the fact that signals incur a loss in

signal strength as they propagate through space. This is
a consequence of the reduction in power density due to
path attenuation, also referred to as path loss. The distance
estimation step is arguably the most critical one, as it directly
translates to accurate position estimation. We explored the
log-distance path loss model and multiple models obtained
by fitting logarithmic models to quantitative data.

1) The log-distance path loss model: A commonly used
path loss model is the so-called log-distance path loss
model [11], given by Equation 1,

PL[dB](d) = PL[dB](d0)+10n log10

(
d
d0

)
, (1)

where PL refers to the average path loss, d0 is a reference
distance at which the path loss is known (usually one meter),
n is the path loss exponent indicating the rate at which the
path loss increases with distance (typical values for the path
loss exponent range from 2.0 to 3.5 [11]), and d is the
distance between the transmitter and receiver.

The path loss can be substituted by the RSSI, and the term
d
d0

can be simplified to just d when a reference distance of
one meter is used. This results in the following equation:

RSSI = RSSI(d0)+10n log10(d). (2)

Finally, rewriting this equation for the distance d gives us:

d = 10
RSSI−RSSI(d0)

10n . (3)

The RSSI at a reference distance d0 of 1 m is called the
transmission (TX) power, and is often included in the signal
send by the transmitter. Instead of using the standard values,
we chose to utilize the values obtained by the one meter
experiments (Section III-C.2) because all beacons were pre-
configured with a TX power value of -59 dBm, which does
not account for differences between the individual beacons.

2) Fitted logarithmic models: Another approach to dis-
tance estimation is measuring the RSSI for a wide range
of distances, and using these measurements to fit the data
with a trendline to obtain a distance model. While such a
model does encapsulate characteristics specific to the bea-
cons, it also inadvertently captures qualities of the receiver.
We measured the RSSI at 24 different distances, from 0.5
meters to 12 meters with increments of 0.5 meters. At
each distance we took 100 measurements with Line-of-Sight
(LOS) conditions, and 100 measurements with Non-Line-of-
Sight (NLOS) conditions simulated by standing in front of
the receiver. The results are shown in Figure 2. The dashed
lines represent the fitted trendlines for the LOS, NLOS mea-
surements, and the average of both. Each point represents the
average of 100 measurements at the corresponding distance.

The fitted trendlines were obtained by fitting the data
using a logarithmic least squares method. The resulting
line equations are shown in Table II. The LOS and NLOS
measurements are fit separately, and the average trendline is
averaging the slope and intercept of both trendlines.



Fig. 2: Average RSSI measurements and their trendlines at
distances between 0.5 and 12 meters

TABLE II: Equations of the fitted trendlines

Trendline Fitted line equation

LOS −6.338ln(d)−66.765
NLOS −3.851ln(d)−75.869
Average −5.094ln(d)−71.317

D. Positioning

The final step towards locating the smartphone receiver
is positioning itself. In this step the estimated distances
from the previous step are used by a positioning method
to estimate the receiver’s position.

Three positioning methods were implemented: trilat-
eration, Weighted Centroid Localization (WCL), and
probability-based positioning.

1) Trilateration: The first method is trilateration. Using
trilateration, a 2D position can be calculated based on the
distances to the closest three transmitters (beacons).

For each transmitter, the set of possible positions of the
receiver can be determined based on the distance between
the transmitter and receiver. In two dimensions, the set of
possible positions equates to a circle given by Equation 4,

di =
√

(xi − x)2 +(yi − y)2, (4)

where di is the distance between transmitter i (Txi) and
the receiver, and (xi,yi) is the known reference position of
transmitter i.

To find the position of the receiver, the intersection of the
three circles has to be calculated [12], [10]. This is done by
solving the following system of equations,

di =
√
(xi − x)2 +(yi − y)2, for i = 1,2,3. (5)

Because the distance estimation is imperfect, there are
three possible cases that can arise: (1) The three circles have
a single intersection point. In this case the intersection point
is used as the estimated position. (2) Only two of the circles
intersect. In this case there are two intersection points to be
considered. For the position estimate, the intersection point
closest to the third beacon is used. (3) None of the circles

intersect. In this case WCL is used. In reality the situation
in case 1 rarely occurs, if ever. Case 2 is the most likely to
arise, and case 3 only occurs when the three circles are non-
overlapping, or when circles are contained in other circles.

2) Weighted Centroid Localization (WCL): The next
method is a multilateration method called Weighted Cen-
troid Localization (WCL). It utilizes all detected transmitters
to estimate the target’s position. It works by calculating
the weighted mean of the known coordinates of nearby
transmitters. Transmitters that are closer to the receiver are
weighed higher and contribute more to the final predicted
position. The position of the weighted centroid is defined by
Equation 6 [13], [14].

(x,y) =
∑

n
i=1(xi,yi) ·wi

∑
n
i=1 wi

, (6)

where (x,y) is the predicted position, n is the number of
considered transmitters, (xi,yi) are the coordinates of the i-th
transmitter and wi is the weight allotted to the i-th transmitter.

The weight is inversely proportional to the distance, and
is given by Equation 7,

wi =
1
dg

i
, (7)

where di is the distance to the i-th transmitter and g controls
the weight drop off at larger distances.

3) Probability-based positioning: Finally, we have the
probability-based positioning method, introduced by Knauth
et al. [15]. This method requires the indoor environment to be
divided into a grid of points [14], [15]. The probability-based
positioning method makes use of a parametric probability
density function p(d,di). The function describes, for an
estimated distance di to transmitter i, the probability p for
the receiver to be at a distance d from the transmitter’s
position. A typical probability density function is defined
in Equation 8 [14],

p(d,di) =
1

(d −di)2 + c
, (8)

where c is a parameter influencing the sharpness of the
function. The probability is higher if the distance d is closer
to the estimated distance di.

Equation 8 gives the probability for a single transmitter.
To get the probability for all transmitters we multiply the
probability of each transmitter to get a residual probability,
as given by Equation 9,

p((x j,y j)) =
n

∏
i=1

p(|(xi,yi)− (x j,y j)|,di), (9)

where (x j,y j) are the coordinates at which the probability
is calculated, n is the number of transmitters, (xi,yi) are the
coordinates of the i-th transmitter and di is the estimated
distance to the i-th transmitter.

Finally, we divide the floor plan into a grid of discrete
coordinates. At each coordinate we calculate the residual
probability given by Equation 9. After looping over all
coordinates the point with the highest residual probability
is chosen to be the predicted position.



IV. EXPERIMENTS

In this section, we discuss the setup and design of the
experiments to evaluate our Indoor Positioning System.

A. Experiment setup

The experiments were conducted on the first floor of
a residential building, consisting of a living room and a
kitchen. A detailed floor plan of the first floor is given in
Figure 3. The floor plan includes the furniture and a grid

Fig. 3: Floor plan showing the beacon placement and ground
truth

with cells of 20 by 20 centimeters. The total area of the first
floor is about 61 m2 and it has a bounding box of about 12
by 9.6 meters.

1) Beacon locations: The beacons were spread uniformly
along the walls of the living room on the first floor, as shown
in Figure 3. Each green dot represents a beacon, and the
associated label indicates the beacon’s name. Every beacon
was placed at the same height in order to enable positioning
in two dimensions, on the plane that intersects all beacons.
If necessary, all methods discussed in Section III-D could be
adapted to operate in three dimensions.

2) Ground truth: The ground truth is given by a path, or
so-called trace, that is defined by nine checkpoints. These
checkpoints are shown in Figure 3. The checkpoint numbers
indicate the direction in which the ground truth path is
traversed. The checkpoints were chosen in such a way that
they represent a ground truth trace that covers the complete
living room. To make sure that the ground truth path was
followed, the checkpoints were carefully marked on the
ground to guide the positioning subject. Furthermore, while
traversing the ground truth path, the positioning subject
walked in a straight line from checkpoint to checkpoint with
a constant speed of about 5 km/h.

3) Ground truth interpolation: A problem with evalu-
ating IPSs is that every single position estimate requires
a complementary ground truth definition in order to cal-
culate the positioning error. To combat this we used the

dynamic evaluation method introduced by Osa et al [16].
It uses the predefined geometrical path shown in Figure 3.
While traversing this path the positioning subject indicates
when each checkpoint is reached in the Android applica-
tion, recording the timestamps corresponding to when each
checkpoint is reached. Now, for each position estimate, a
corresponding interpolated checkpoint/ground truth point can
be generated by determining between which checkpoints
the position estimate falls and, using the timestamps of the
position estimate and the checkpoints, linearly interpolating
between the previous and upcoming checkpoints.

B. Experiment parameters

The RSSI filtering method, window size, distance model
and positioning methods were described in detail in Section
III. Table III lists all the different parameters explored in
the experiments, along with the considered values. For the

TABLE III: Experiment parameters and the corresponding
values

Parameter Values

RSSI filtering method Mean, median, mode

Window size 1, 5, 10, 15, 20 measurements

Distance model Log-distance path loss model, fitted LOS,
fitted NLOS, fitted average

Path loss exponent (n) 1.5 – 3.5, with 0.1 increments

Positioning method Trilateration, Weighted Centroid Localiza-
tion (WCL), probability-based positioning

Weight exponent (g) 0.5 – 3.5, with 0.5 increments

Probability sharpness (c) 0.5 – 3.5, with 0.5 increments

window size five different values are considered, capped at
20 measurements to avoid delays in the distance estimation.
The values of the weight exponent and probability sharpness
are capped at 3.5, since increasing these parameters further
would have a diminishing impact on the resulting weights
and probabilities.

C. Replaying RSSI measurements

The parameters listed in Table III all affect the perfor-
mance of the IPS. However, some parameters are also af-
fected by changes in other, related parameters. For example,
changes in the window size affect the filtering methods. This
makes it hard to test changes in a parameter in isolation. Fur-
thermore, RSSI measurements differ between experiments
making it even more challenging to objectively compare
results.

To account for these difficulties, a system was imple-
mented that can replay the RSSI measurements as they were
received by the smartphone. This is done by using the stored
RSSI measurements and corresponding timestamps, along
with the timestamps recorded for each position estimate. The
system calculates the distance and position estimates exactly
like the Android application, but it is not bound by time
delays between the RSSI measurements, as all measurements
are readily available. Consequently, it can apply different



positioning techniques with arbitrary parameters to the same
set of RSSI measurements — in a matter of seconds. Using
this system, all parameter combinations can be efficiently ex-
plored and objectively compared. In total there are 4680 valid
possible combinations of the parameters given in Table III.

V. RESULTS AND DISCUSSION

The ground truth path was traversed ten times, resulting
in ten different sets of RSSI measurements. For each set
of measurements, 4680 different parameter combinations
were explored by replaying the RSSI measurements —
resulting in a total of 46800 post-processed traces. For the
final positioning error of each parameter combination, the
ten positioning errors corresponding to each set of RSSI
measurements were averaged. We discuss and briefly sum-
marize the effect of each parameter on the positioning error,
evaluating the best performing parameter combination and
the overall performance of the IPS.

A. Parameter exploration

In order to evaluate the effect of each parameter on the
positioning error, the discrete values of the parameters were
used to create notched box plots. The notches represent the
95% confidence interval of the median, determined using
a Gaussian-based asymptotic approximation [17]. Overlaid
on the box plots are scatter plots of the corresponding
data points. Each data point represent a unique parameter
combination, where the specified parameter value is kept
fixed. As such, the data points in the scatter plots are
subsets of the 4680 different parameter combinations. For
some parameter values, such as the log-distance path loss
model distance model, related parameters (e.g. the path loss
exponent) are explored resulting in more data points.

The positioning errors in Figure 4 are obtained using the
median positioning error metric. To reduce overplotting, the
data points are jittered. The wide spread of errors for every
possible parameter combination is shown in Figure 4a. The
best parameter combinations result in a median positioning
error of about 1.5 meters, while the worst combinations
result in errors of above 3 meters. The best combinations
are most interesting, and are further explored in Section V-
B. The median error of all parameter combinations is about
2.27±0.027 m. This value is useful to contextualize whether
a certain parameter value has a positive or negative effect on
the overall positioning error, and is therefore explicitly shown
as a red, dashed line in the sub-figures of Figure 4.

1) RSSI filtering method: The first parameter to be ex-
plored is the RSSI filtering method. The results for each
method are presented in Figure 4b. It is evident that the
mean filtering method performs significantly worse than the
other two methods, with a median positioning error of about
2.51±0.03 m and no data points with an error below 1.8 m.
The median filtering method and the mode filtering method
perform equally well; the median positioning error of the
median filtering method is about 2.04±0.03 m, and median
error of the mode filtering method is about 2.03±0.03 m.

2) Window size: For the window size five different values
were considered: 1, 5, 10, 15 and 20. In Figure 4c, the
results for the different window sizes are shown. The median
positioning error for parameter combinations with a window
size of 1 is about 2.65 ± 0.01 m, which is well above
the median of the other window sizes. Additionally, all
parameter combinations with a window size of 1 have a
positioning error above 2.45 meters, and the worst parameter
combinations all have a window size of 1. These observations
indicate that RSSI filtering is an effective way of reducing
variances and, by extension, the positioning error. With a
median position error of about 2.03 ± 0.04 m, a window
size of 10 performs the best out of the explored values.
Noteworthy however, is that the performance of the window
size is related to the travelling speed. For the experiments
a casual walking speed of around 5 km/h was maintained.
At this speed the window sizes of 15 and 20 also perform
relatively well, as they have a median positioning error of
2.10±0.05 m and 2.13±0.05 m respectively.

3) Distance model: Four distance models used in the IPS:
the log-distance path loss model, and the models obtained by
fitting distance – RSSI measurements. The results of using
these distance models are shown in Figure 4d. The optimal
distance method depends on the indoor environment; the log-
distance path loss model or the fitted NLOS model might
better suited for buildings with frequent LOS obstructions,
while open-plan buildings are ideal for the fitted LOS model.
The fitted average model is a compromise between both situ-
ations. For the indoor environment used in our experiments,
the fitted LOS model performs the best. It has a median
positioning error of 2.02± 0.07 m, which is considerably
lower than the median error of the complete set of parameter
combinations. The fitted average model performs relatively
well with a median positioning error of 2.08±0.05 m.

a) Path loss exponent: One of the parameters used in
the log-distance path loss model is the path loss exponent.
The positioning error for values between 1.5 and 3.5, with
0.1 increments, is shown in Figure 4e. The positioning
error increases as the path loss exponent increases. This
is consistent with the previous results that showed that the
fitted LOS has the lowest positioning error since lower
path loss exponents equate to a slower RSSI drop-off, as
associated with LOS conditions [11]. The path loss exponent
1.8 results in the lowest positioning error with a median value
of 2.03±0.08 m, which is comparable to the median error
using the fitted LOS and fitted average distance model.

4) Positioning method: Three positioning methods were
implemented: probability-based positioning, trilateration and
WCL, shown in Figure 4f. Trilateration has the best median
performance with a positioning error of 1.87±0.05 m. The
probability-based positioning method has the worst median
positioning error of 2.55±0.02 m. When WCL is used, the
median positioning error is 2.07±0.03 m and the range of
errors is similar to that of the trilateration method.

a) Weight exponent: An important parameter in WCL
is the weight exponent, as discussed in Section III-D.2. For
our experiments, six different values were explored: 0.5, 1.0,



(a) All parameter combinations
(b) RSSI filtering methods (c) Window sizes

(d) Distance models (e) Path loss exponent values (f) Positioning methods

(g) Weight exponent values (h) Probability sharpness values

Fig. 4: Average positioning error for the indicated parameters, data points are jittered to increases legibility

1.5, 2.0, 2.5, 3.0 and 3.5. The resulting positioning errors are
shown in Figure 4g. The positioning error decreases as the
weight exponent increases, indicating that more aggressive
weighing of the beacon coordinates, based on the corre-
sponding distances, improves the performance. The effect
flattens off at weight exponents of 2.0 and above. The median
positioning error corresponding to the weight exponent value
of 0.5 is 2.61±0.02 m, while the median positioning error
for the weight exponent with a value of 2.0 is 2.01±0.05 m
— rivalling the median error obtained using trilateration.

b) Probability sharpness: The final parameter that we
explored is the probability sharpness, used in probability-
based positioning as discussed in Section III-D.3. Probability
sharpness values between 0.5 and 3.5 were explored. The
results are shown in Figure 4h. The median positioning
error monotonically decreases as the probability sharpness
increases. The decline in the positioning error is small, and

the subsequent median positioning errors fall only just below
the 95% confidence interval that corresponds to the previous
median positioning error. The error of the probability sharp-
ness with a value of 0.5 is 2.67±0.05 m. On the other end
of the explored value range, the median positioning error is
2.46±0.06 m for the probability sharpness value of 3.5.

B. Best results

The best performing parameter combination is selected
based on the average positioning error over the mean error,
root-mean-square error, median error, 75th percentile error,
and the 90th percentile error. There are three best parameter
combinations that perform equally well because the perfor-
mance of these parameter combinations is the same for the
window sizes of 10, 15 and 20 due to the median filtering
method. The error metrics in meters along with the parameter
values are shown in Table IV. The window sizes are shown



as a set of multiple values, corresponding to the parameter
grouping. The median positioning error for the best parame-

TABLE IV: Positioning error metrics and parameter values
for the best performing parameter combination

Mean RMS Median 75th

Percentile
90th

Percentile

1.59±
0.319

1.83±
0.408

1.48±
0.283

2.10±
0.434

2.68±
0.882

Filtering
method

Window
size

Distance
model

Path loss
exponent

Positioning
method

Weight
exponent

Probability
sharpness

Median {10, 15,
20}

Log-
distance
path loss

2.4 WCL 3.0 N/A

ter combination is 1.48±0.283 meters. The positioning error
sharply increases in the upper percentiles, indicating few
increasingly bad predictions. Ironing these out would greatly
reduce the mean and root-mean-square positioning errors.
The values corresponding to the best performing parameter
combination are in line with the observations in Section V-A.
The median RSSI filtering method is used, the window sizes
are exclusively above five, the log-distance path loss model
is used and positioning is done using WCL.

VI. CONCLUSIONS

In this paper, an Indoor Positioning System (IPS) is
implemented that runs locally on a smartphone and requires
minimal setup before it is able to operate. At the core of
this IPS are four main steps: collecting RSSI measurements,
filtering these measurement, distance estimation, and posi-
tioning. To evaluate the performance of various methods and
the IPS as a whole, several experiments were performed in
which the position of the subject with the smartphone was
estimated periodically while traversing a predefined path.
Ground truth points were generated by interpolating between
checkpoints with known timestamps using the timestamps of
each received RSSI measurement.

The IPS has different parameters that affect the perfor-
mance of the system. The experiment results showed that
a window size of 10 significantly decreased the position-
ing error compared to smaller measurement windows. The
median RSSI filtering method was the most effective in
filtering the variance between RSSI measurements. The best
performing distance estimation models were the fitted LOS
model, and the log-distance path loss model using a path
loss exponent between 1.5 and 2.0. The positioning methods
with the lowest median positioning error were trilateration
and WCL with a weight exponent between 2.0 to 3.5.
The best performing parameter combinations had a median
positioning error of about 1.48 ± 0.283 meters, and used
the median filtering method, window sizes between 10 and
20, the log-distance path loss model, and Weighted Centroid
Localization with a weight exponent between 2.0 and 3.5.

As a possible further improvement to this work, the
Bluetooth 5.1 specification supports Angle of Arrival (AOA)
measurements enabling triangulation techniques that could

lead to large accuracy improvements. Evaluating the IPS
using multiple ground truth paths and multiple indoor en-
vironments would result in more rigorous experiments and
results. Other interesting avenues of research include optimal
BLE beacon placement, the effects of varying the number
of deployed beacons, and heuristics that could be used to
dynamically adjust the window size.

The code and data of this paper are made publicly avail-
able4. Any use must include a citation to this paper.
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