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Abstract—This paper investigates how to complement
Complex Event Processing (CEP) with dynamic quality
monitoring mechanisms and support the dynamic integra-
tion of suitable sensory data sources. In the proposed ap-
proach, queries to detect complex events are annotated with
consumer-definable quality policies that are evaluated and
used to autonomously assign (or even configure) suitable data
sources of the sensing infrastructure. We present and study
different forms of expressing quality policies and explore
how they affect the process of quality monitoring including
different modes of assessing and applying quality-related
adaptations. A performance study in an IoT scenario shows
that the proposed mechanisms in supporting quality policy
monitoring and adaptively selecting suitable data sources
succeed in enhancing the acquired quality of results while
fulfilling consumers’ quality requirements. We show that the
quality-based selection of sensor sources also extends the
network’s lifetime by optimizing the data sources’ energy
consumption.

Index Terms—Complex Event Processing, Adaptation,
Quality, Internet of Things

I. INTRODUCTION

In applications of the Internet of Things (IoT), real-
time responses to situations are a key requirement, e.g.,
to detect, with low latency, a traffic jam in a traffic moni-
toring application. Distributed Complex Event Processing
(DCEP) allows the efficient detection of situations of
interest in the form of complex events. The detection of
complex events and the resulting quality depends espe-
cially for IoT applications on primary event sources, often
based on sensory data. In particular, the quality expressed
in form of Quality of Service (QoS) and Quality of Results
(QoR) depends on the dynamics of the environment, e.g.,
the availability of data sources.

In DCEP, an established way of reacting to dynamics
is to adapt the configuration of the detection logic and
their placement to resources of a distributed environment
(cf. [2], [11]–[13], [18]). This allows influencing QoS
metrics of a DCEP system, e.g., end-to-end latency, and
bandwidth consumption. In combination with other run-
time mechanisms like load shedding (e.g., [16], [21]),
DCEP can already benefit from trading QoS against QoR.
However, state-of-the-art approaches operate by design
decoupled from the configuration of data sources and
their capabilities. This imposes limitations on reacting to

changes in the sensory system, e.g., the energy level of
sensors, or the quality of sensed data. Changes in QoR
are propagated, but not actively influenced by the DCEP
system.

Contrary, in the context of the sensor selection prob-
lem [5] and data source switching mechanisms (e.g., [8],
[14]) related approaches study the dynamic selection of
sensors in IoT environment to optimize QoR of sensed
data. Such optimizations are performed with respect to
specific data attributes or a set of specific fused sensor
sources. However, integrating such methods in the context
of DCEP requires linking them dynamically to different
configurations of heterogeneous sensory sources. Only
in this way, the flexibility of current DCEP systems in
reconfiguring and rewriting the detection logic of complex
events can be used to optimize for QoR.

In this paper, we contribute to a better understanding of
how to link sensor configurations with the capabilities of
adapting DCEP environments to enhance QoR and QoS.
We enhance DCEP with the concept of so-called quality
policies and corresponding quality monitoring mecha-
nisms. This enables DCEP to observe necessary changes
at the sensor deployment and the complex event detection
logic. As a result, DCEP can define appropriate sensing
configuration restrictions (e.g., cost constraints) subject to
the quality requirements expressed by consumers. Subse-
quently, such restrictions can be utilized as a utility metric
in an efficient data source assignment.

In summary, this paper offers the following contribu-
tions:

1) A new model to represent quality requirements in
DCEP systems in order to improve resource utiliza-
tion in IoT.

2) A CEP quality monitoring mechanism that triggers
adaptation decisions to meet consumers’ quality
requirements.

3) A performance evaluation of the proposed approach
by applying quality policies over a synthetic dataset.

The paper is structured as follows. We introduce the
problem of quality-driven CEP in Section II. A system
design is detailed in Section III. We present evaluation
results of quality-driven CEP in Section IV. Section V
concludes the paper and discusses future work.
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II. PROBLEM STATEMENT

We consider a DCEP system to consist of produc-
ers, consumers and brokers. The producers (e.g., mobile
phones) generate simple events from sensory data. The
sensory data sources (e.g., Bluetooth) that are used at a
given time t form the set of active sensing deployments
SD = {sd1, ..., sdj} where sdi refers to a specific sensor
source.

Correspondingly, consumers (e.g., applications) express
their interest in complex events in the form of queries
where the set Q = {q1, . . . , qn} denotes the set of
currently deployed queries. Each query qi describes the
logic of how to detect complex events in the form of
standard CEP operators like pattern matching, windows, or
aggregates over event streams and specific event attributes.
The imposed detection logic is executed on the brokers.
As part of the query, consumers also annotate in queries
for event attributes their quality requirements (e.g., the
location accuracy less than one meter). We denote the set
of consumer-side constraints of all deployed queries in Q
by G = {g1, g2, ..., gk}.

In this work, we aim to support quality-driven CEP, in
which, a DCEP system selects suitable data sources, i.e.,
a sensing deployment α(SD) ⊂ SD, where α determines
which sensor sources of SD are used. A quality-driven
CEP is required to meet the consumer constraints in
quality or notify consumers when no proper sensing de-
ployment is feasible. Furthermore, each sensor source sdj
of a sensing deployment imposes a system-side cost (SSC)
denoted by CSSC(sdj) as well as a cost for performing
quality monitoring (QM) for every query qk denoted by
CQM (sdj , qk).

More, formally a quality-driven CEP aims to find α
which minimizes the cost factors imposed by system-side
costs and quality monitoring costs subject to the quality
constraints of a consumer, i.e.,

min ws

∑
sdj∈SD

α(sdj)CSSC(sdj)

+ wq

∑
sdj∈SD

α(sdj)
∑
qk∈Q

CQM (sdj , qk)

s.t. α(SD) satisfies Consumer-Side Constraints in G
α(sdj) = 1 iff sdj is selected.
α(sdj) ∈ {0, 1}

where ws indicates the weight related to system-side
costs, and wq is the weight associated with monitoring
costs.

III. SYSTEM DESIGN

In the system’s design, we build on a logically central-
ized component, called the controller to enforce a quality-
driven CEP. As illustrated in Figure 1, the controller
supports the matching of subscriptions to advertisements
and places the detection logic on functional CEP en-
gines hosted by the brokers. In addition, the controller’s
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Fig. 1. Proposed System Design. The solid lines indicate the Data/Event
Flow, while dashed indicate Query Control Flow.

functionality is enriched by employing quality agents
which generate so-called control events to enunciate a
quality-related situation. Furthermore, the controller reuses
concepts for the flexible execution of event processing
operators, as proposed in TCEP [12] and CEPLESS [10],
enabling to emendate the operator placement utilizing
processing engines (e.g., Apache Flink).

A. Quality Requirement Description

This research extends the typical query definition by
introducing quality policies, which specify those quality
metrics substantial for the consumers, e.g., the latency
of delivered values. In addition, threshold levels can be
defined to quantify queries’ quality requirements. We
categorized quality policies as static and dynamic. In the
static class, a constant threshold can be clearly determined
in the query definition, only for one type of quality
metric. Hence, a distinct static quality policy is required
for each aspect of an event, e.g., a policy might define a
threshold for the acceptable resolution of images in PPI.
In the second class of quality policies, more flexibility
is provided since the dynamic thresholds can be defined
based on a second parameter (e.g., time). This enables
a consumer to generate more intricate quality definitions
causing a higher level of requirement satisfaction.

The controller validates the data sources’ characteristics
concerning the requested thresholds and regulates them, if
necessary. When non of the available data sources is either
qualified or can be adjusted based on the threshold, the
controller rewrites the query or quality requirements and
notifies the query issuer. Then, the consumer will decide
whether to deploy the new query model or withdraw
the query. Besides, the quality policy should be revised
over time since consumer preferences may vary, e.g.,
reducing the threshold of the result’s interval in case of
an emergency in healthcare systems.

B. Quality Monitoring

In the monitoring procedure, the surveillance model
(e.g., with the lowest latency) and accessible computation
resources should be pondered simultaneously since both



influence adaptation decisions. Hence, one of the novelties
in this work is to introduce and employ a Quality Manage-
ment Agent (QMA) that is in charge of inspecting the event
streams according to the requested quality requirements.
This component can be hosted similarly to operators
(e.g., at brokers) checking the quality of produced events
(i.e., Qcheck). At the same time, it can be connected to
producers to update the data sources’ status.

To estimate the costs imposed by hiring QMAs, over-
head can be seen concerning time includes the cost of
switching between the current data source (i.e., sdj) and
the next option (i.e., sdl) as (Cs(sdj , sdl, qk)) and the
possible delay caused by quality analysis (Ca(sdj , qk)),
as well as computation as required resources for sliding
window processing (Cw(sdj , qk)) and the resource for
assigning data sources (Cads(qk)), totally as:

CQM (sdj , qk) = Cs(sdj , sdl, qk) + Ca(sdj , qk)

+ Cw(sdj , qk) + Cads(qk)

C. Sensing Deployment Adaptation

To make adaptation decisions, a step-by-step instruction
set is demanded to receive sufficient information and allo-
cate suitable data sources. To this end, we adapt the whole
allocation procedure based on MAPE-K feedback loop [4].
In this vein, a data source is tagged as qualified if its
provided service meets all specified quality policies in the
subscription. Then, the system-side costs are calculated for
each qualified option, e.g., if the latency is the significant
factor for the system, the required time to deliver the
events to the brokers from each qualified data source will
be considered in the utility function. Moreover, the results
from CQM (sdj , qk) are added as quality monitoring costs.
Finally, once all costs are determined, a globally optimized
solution will highlight the data sources among all qualified
choices to feed the CEP system.

In the meantime, QMAs investigate the status of events
and data sources to produce alarms, if necessary. Upon
receiving any, the controller checks the alarm’s type and
reacts proportionally to maintain the quality of results.
In more detail, if the alarm implies that a data source is
not reachable anymore, the controller updates the list of
advertisements and reassigns the data sources, if required.
Moreover, since the data source’s quality may degrade over
time (e.g., reading’s accuracy), the controller will perform
the data source reassignment if the sensor cannot heal
timely. For the sake of shortness, we skip other types
of alarms (e.g., a modification in quality policies) that
demand similar responses.

IV. EVALUATION

In this section, we compare the execution of quality-
driven CEP with two baseline strategies; Optimal Dynamic
Accuracy (ODA) and Optimal Dynamic Energy (ODE).
The former dynamically picks the most satisfactory data
source in terms of accuracy and adjusts the sensing deploy-
ment regarding the person’s current location. The latter
assesses the energy consumption of the accessible data

Fig. 2. Use-Case for dynamic quality policy monitoring

sources as the distinguishing factor to adaptively opt for
the best option on every occasion.

In our simulation, we exploit Apache Kafka to operate
as an event broker that serves data and control events.
Besides, we use FlinkCEP, a library implemented on top
of Apache Flink to detect complex events. To exhibit
the potential abilities, we evaluate our quality-driven CEP
system in two different scenarios with static and dynamic
quality policies. But, for the sake of shortness, we elabo-
rate on the second type, which illustrates better the benefits
of applying quality policies in query processing.

Use-Case Scenario: The chosen IoT scenario for
dynamic quality policy is a security monitoring application
for target location tracking. Given a continuous query,
the goal is about locating people who are approaching a
red-flagged spot in a pre-determined area as depicted in
Figure 2. Here, the system aims to warn people who are
in proximity to a red-flagged spot with a distance smaller
than a predefined value. Moreover, the dynamic quality
policy for this query is specified as ”The closer a target
is to the red-flagged spot, the more accurate the location
event is”. In this policy, the requested quality metric is
accuracy and the second parameter based on which the
accuracy is varied is location. In the query submission,
a consumer should accurately specify the details for the
red-flagged spot, and thresholds for the quality policy.

All moving targets in this scenario previously intro-
duced their accessible sensing infrastructure (e.g., smart-
phone) with their sensing capabilities (e.g., location track-
ing by WiFi module). In addition to these data sources
carried by targets, stationary data sources are embedded
in the environment (e.g., a surveillance camera). We
assume that all targets will give continuous access to
their registered data sources and not deliberately block the
connection. In order to estimate the energy consumption
in this scenario, we reuse the energy consumption (EC)
measurements (collected from [3], [9], [15], [17], [19]),
exhibited in Table I. It should be noted that among all
data sources shown in this table, only Camera is tagged as
stationary, while others consume the battery power of the
target’s smartphone. To normalize the energy consumption



TABLE I
SENSING CONFIGURATIONS AND THEIR CHARACTERISTICS

Name Range (m) EC (mW) Accuracy(m)
BLE 70 - 100 426 1 - 3
RFID 1 - 12 375 0.1 - 2
WIFI 50 - 100 817 1 - 5

Camera N/A 374 < 1
LTE > Km 1634 < 1

TABLE II
APPLIED QUERIES IN THE DYNAMIC QUALITY POLICY SCENARIO

Q# Definition Quality Policies
RFS PR(m) Q-metric condition

Q1 60 : 185 70
Accu < 2m 0 < DTS < 100
Accu < 5m 100 < DTS < 200
Accu < 10m 200 < DTS < 1000

Q2 310 : 80 80 Accu < 3m 0 < DTS < 50
Accu < 7m 50 < DTS < 1000

Q3 190 : 240 50 Accu < 2m 0 < DTS < 100
Accu < 5m 100 < DTS < 1000

Q4 370 : 200 60 Accu < 4m 0 < DTS < 50
Accu < 10m 50 < DTS < 1000

Q5 210 : 140 35
Accu < 2m 0 < DTS < 20
Accu < 3m 20 < DTS < 50
Accu < 5m 50 < DTS < 1000

of the Camera, we assume that its consumption is equal to
the situation in which the smartphone is placed in airplane
mode.

To investigate various query models with diverse lo-
cations for the red-flagged spot and the requested quality
policies, we try the queries listed in Table II. Each of these
queries is applied separately to our scenario. To estimate
the availability of data sources based on their coverage,
a route should be defined for the target. Therefore, a
synthetic location dataset for a target route is utilized in
our simulation that covers all zones in the predetermined
area. In each query, the position of the red-flagged spot is
denoted by RFS, and the prohibition radius is presented
as PR. Consequently, if a moving target is located at a
distance less than PR to the RFS point, an alarm should
be generated. Moreover, the dynamic quality policy is
depicted based on a pair of Q-metric and the corresponding
condition. In the former, the required level of accuracy
(Accu) is determined, while in the latter, the upper and
lower bound values for the Distance To Spot (DTS) are
specified.

The simulation output of applying dynamic quality
policy over query processing is depicted in Figures 3
and 4. First, we discuss the performance in terms of
consumed energy. One can observe from Figure 3 that the
ODA’s bars exceedingly getting taller with the increase
in the number of queries. That means if an approach
takes the highest accuracy all the time, it will shortly
deplete the smartphone’s battery completely. This confirms
the motivation of our work to dynamically select the
best sensing infrastructure. The reason for such dramatic
consumption is the high amount of energy required to
establish and maintain an LTE connection. On the other

Fig. 3. Total energy consumed by active data sources for a different set
of queries

Fig. 4. Number of detected events and the summation of FP and FN for
a different set of queries

hand, the consumption of quality-driven CEP and ODE is
pretty similar, with a small excess in our results. Keeping
this fact in mind that ODE is assumed as the optimal
approach in terms of energy consumption, the obtained
results ascertain that our quality-driven CEP performed
slightly behind ODE, which authorizes us to claim that our
solution is near-optimal in terms of energy consumption.

Two favorable comparison metrics in event processing
systems are the number of False Negatives (FN) and False
Positives (FP). In our example, an FN denotes a violation
by entering a red-flagged area that occurred in the real
world, but the event processing system could not catch it
and trigger an alarm. Besides, an FP indicates a wrong
violation has been detected in the system while in the
reality it did not occur. Since both of these errors are
feasible in our use case with small counts, we form a single
number of their summation that makes the differences
more distinguishable as illustrated in Figure 4. The ODA
employs the best sensing deployment in terms of accuracy.
That’s why its results display the exact number of events
that should be detected, without any number of FN or FP.



To achieve such accuracy in event detection, the system
will swallow the battery capacity in no time. Although the
number of detected events in others (i.e., ODE and quality-
driven CEP) is almost the same as ODA, the growth of FNs
+ FPs makes the difference, especially by involving more
queries. In other words, the enlargement in the number
of FNs and FPs is more evident in the bars related to
ODE, while this summation in our results remains the
same after adding more queries. The imaginable reason
for the better performance of quality-driven CEP is the
lower detection capacity of data sources with the smallest
energy consumption when the red-flagged spot is located
in their closed vicinity.

Similar to FN and FP in stream processing, precision
and recall are mostly employed to distinguish between
classifiers in the Machine Learning field of study. F-Score
is a comparison measure that combines these two metrics
[20]. Therefore, it can be used in stream processing to
compare mechanisms in terms of accuracy. Analyzing the
F-Score shows an ascending trend in the reports which
are approximately 0.947%, 0.941%, 0.961%, 0.975%, and
0.977% for set of 1,2,3,4 and 5 queries, respectively.
While, the outcome for ODE as 1%, 0.969%, 0.961%,
0.962%, and 0.953% displays a descending trend. This
proves the ability of quality-driven CEP to deal with
involving more queries while maintaining the accuracy of
event detection.

V. CONCLUSION AND OUTLOOK

In this research, we studied how to adaptively configure
sensing deployments based on the monitored quality char-
acteristics of detected events and their data sources. The
reported results demonstrated that in quality-driven CEP
adapting the sensing deployment performed near-optimal
in both energy consumption and quality measured in form
of FNs/FPs. In addition, the F-Score results proved the
capabilities of quality-driven CEP to better deal with the
quality requirements of consumers when the number of
deployed queries increases.

In future work, we plan to study how to better sup-
port concurrent queries by introducing priorities as part
of quality policy definitions, a common requirement in
current event-driven applications. In addition, estimating
and accounting for the switching overhead in selecting data
sources is a central point that requires further understand-
ing. Finally, we plan to extend our study by accounting
also for more dynamic behavior by also considering the
quality degradation of data sources over time and studying
appropriate models for dynamic quality policies.
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