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Abstract—Today, there are standard and well established
procedures within the Human Activity Recognition (HAR)
pipeline. However, some of these conventional approaches lead
to accuracy overestimation. In particular, sliding windows for
data segmentation followed by standard random k-fold cross
validation, produce biased results. An analysis of previous
literature and present-day studies, surprisingly, shows that these
are common approaches in state-of-the-art studies on HAR.
It is important to raise awareness in the scientific community
about this problem, whose negative effects are being overlooked.
Otherwise, publications of biased results lead to papers that
report lower accuracies, with correct unbiased methods, harder
to publish. Several experiments with different types of datasets
and different types of classification models allow us to exhibit
the problem and show it persists independently of the method
or dataset.

Index Terms—Performance Overestimation, Biased Accuracy,
Human Activity Recognition, Random K-Fold Cross-Validation

I. INTRODUCTION

Human Activity Recognition is an ongoing research topic
in the fields of ubiquitous and pervasive computing, health-
care, ambient assisted living, among others. Several methods
has been proposed for HAR, from traditional machine learn-
ing algorithms [1]–[3], to current Deep Learning approaches
[4]–[7]. With either approach, supervised learning is com-
monly used to learn models that classify activities based on
annotated sensor data collected from an instrumented testing
environment, e.g., a smart home, wearable IMU sensors.
Generally, HAR implementations include data collection, pre-
processing, data segmentation, feature extraction, and classi-
fication.

Some previous studies on HAR noticed that conventional
methods used within the HAR pipeline can lead to accuracy
overestimation. Hammerla and Plötz [8] proved that standard
k-fold cross validation (CV) are biased due to statistical
dependence between data samples, specially when using
sliding windows for data segmentation. The problem was
also mentioned in [9]–[13], although these papers focused
on different goals, and did not go into analyzing the problem
in detail.

Surprisingly, it is a widely-used ongoing practice within
the HAR domain. Table I shows a list of recent studies
where sliding windows segmentation and random K-fold CV
are used in the HAR pipeline. While not exhaustive, this
list includes remarkable works from previous years, and a
growing number of present-day studies. These works have
been published in top journals or presented at top conferences
which have created a high impact in the HAR community.

In this work, we evaluated the effect of sliding windows
data segmentation and random splitting on model accuracy.
We used datasets with different data modality: CASAS [32]
binary motion sensors, MHEALTH [33] and PAMAP2 [34]
on-body inertial sensors. Likewise, classification models of
different nature: Random Forest (RF), Graph Neural Net-
works (GNNs) were applied. The results show that indepen-
dently of the type of data and the chosen model the reported
accuracy is highly overestimated following the aforemen-
tioned approach.

The main contribution of this paper is two-fold: (1) It pro-
vides an extensive survey of recent papers in the HAR domain
that employ the flawed methodology, showing the importance
of warning the community. (2) It provides a set of experiments
using different types of HAR datasets and different types of
supervised machine learning approaches, evidencing that the
problem persists in all cases and configurations.

The remainder of this document is as follows. Section II de-
scribes the methodological issues in conventional approaches
for HAR. Section III presents an extensive recent related work
on HAR incurring in this problem. Section IV describes our
experiments, presents the results and discussion focused on
showing the effects of the problem. Section V presents the
lessons learned. Finally, section VI presents the conclusions.

II. MODEL PERFORMANCE OVERESTIMATION

Data segmentation following some windowing technique
is the conventional approach for HAR [35], [36], and sliding
windows are the most widely adopted [37] approach. The
windows can be overlapping or non-overlapping, where the
length is defined in t seconds or s number of sensor readings.



The input stream of sensor readings is split into windows
of equal size. Then, a set of features is calculated from each
window, which are used as input for the classification models.
Fig. 1 shows the windows-based data segmentation.

One way to evaluate the performance of the classifier is
using a hold out part of the entire dataset, i.e., the test set. The
conventional approach is randomly splitting the dataset into
training/test subsets at some predefined ratio (e.g., 80:20). The
training set can be split further, obtaining a validation subset
which is used for model selection and/or hyper-parameter
optimization. The most used technique to assess the perfor-
mance of the classifiers is k-fold CV [9]. First, the data is split
into k disjoint subsets of equal size. Then, the model is trained
on k-1 subsets and evaluated on the kth. This process is re-
peated k times with a different subset. The final performance
of the model is the mean of all runs. The CV method assumes
data samples to be Independent and Identically Distributed
(i.i.d.) [38]; then, the way of choosing samples does not affect
the classifier’s performance. This is where the problem on
(re)current practices for HAR lies. Using sliding windows
for data segmentation and feature extraction, the statistical
independence assumption does not hold anymore. Therefore,
random training/test split does affect the performance of the
model because of contiguous windows are assigned one to
training and the previous and(or) next to the test set.

The problem can be observed with greater clarity in Fig. 1a.
Windows w1, w2, and w3 share the samples s3−s6. Sample
s2 is shared between w1 and w2 and s7 between w2 and w3.
Hence, the features obtained from those windows are drawn
from almost the same underlying data samples, breaking the
i.i.d. assumption. Thus, if w2 is randomly chosen for testing
and w1 and w3 are kept for training, the classifier is tested
on data that was already seen. Consequently, the performance
of the classification model is overestimated. In the case of
non-overlapping windows (Fig. 1b), the dependence between
consecutive windows is less evident. However, for long run-

Fig. 1: Overlapping and non-overlapping sliding windows
data segmentation

ning activities (e.g., walking, standing, reading), the similarity
between samples drawn in a short interval will create a strong
correlation between consecutive windows [8], [9]. Hence,
it is likely that consecutive windows have similar samples
corresponding the same activity. From Fig. 1b, if w2 is
randomly assigned to the test set, it will be almost identically
to w1 and w3 assigned to the training set. This creates an
illusion of perfect accuracy because of overfitting, caused
by the strong correlation between consecutive windows and
random splitting of training and test sets. The models just
memorize the training data instead of learning the patterns
that uniquely characterize each activity. They produce the
correct label because the same data was seen during training.

Performance overestimation can be avoided ensuring the
independence between training and test sets. One option is
applying Leave-One-Subject-Out CV (LOSO-CV), a variant
of k-fold CV [8], [9]. In LOSO-CV, instead of randomly
choosing the samples to include in each fold, the data samples
belonging to one subject are used for testing, while the data
from the remaining subjects are used for training. This is
repeated for each subject in the experiment. This approach
is more rigid than traditional k-fold CV, but it ensures the
independence between training and test sets [12]. However,
a LOSO-CV is not always feasible if the number of subjects
in the experiments is either too small or too large [8]. Few
users lead to an unrealistic view of the model performance.
On the contrary, too many subjects increase the computational

TABLE I: HAR studies following a sliding window data segmentation and random training/test split validation approach.

Authors Year, (Citations) Journal/Conference (Impact Factor)

Khalifa et al. [14] 2017, (159) IEEE Transactions on Mobile Computing (6.1)
Micucci et al. [15] 2017, (481) Applied Sciences (2.8)
San-Segundo et al. [16] 2018, (101) Engineering Applications of Artificial Intelligence, (7.8)
Wang et al. [17] 2018, (29) Smart Health (5.1)
Mutegeki and Han [18] 2020, (268) ICAIIC -
Ni et al. [19] 2020, (20) Sensors (3.8)
Gupta [20] 2021, (74) International Journal of Information Management Data Insights -
Li et al. [21] 2021, (9) UBICOMP 2021 -
Mekruksavanich and Jitpattanakul [22] 2021, (196) Sensors (3.8)
Bouchabou et al. [23] 2021, (24) Communications in Computer and Information Science -
Gómez Ramos et al. [24] 2021, (19) Sensors (3.8)
Zimbelman and Keefe [25] 2021, (14) PLOS ONE -
Yan et al. [26] 2022, (14) IEEE International Conference on Bioinformatics and Biomedicine -
Wang et al. [27] 2022, (28) IEEE Sensors Journal (4.3)
Huang et al. [28] 2022, (40) IEEE Transactions on Mobile Computing (6.1)
Luo et al. [29] 2023, (21) IEEE Transactions on Mobile Computing (6.1)
Wu et al. [30] 2023, (10) Knowledge-Based Systems (8.1)
Garcia-Gonzalez et al. [31] 2023, (15) Knowledge-Based Systems (8.1)



complexity making the use of a model even impractical [8].
Group K-Fold CV1, a generalization of LOSO, is a valid and
straightforward approach to ensure an unbiased evaluation
strategy. In this case, the data samples are grouped by a
third-party parameter which can be defined per use-case basis,
e.g., collection date, subject-id, etc. Grouped partitions ensure
that data samples corresponding to the same group are not
represented in both testing and training sets.

III. (RE)CURRENT PRACTICES IN HAR

The methodological issues that lead to accuracy overesti-
mation is an ongoing practice within the HAR community,
as presented in Table I. Some of those studies applied
traditional machine learning algorithms for HAR [14]–[17],
[25]. The most common algorithms are Decision Trees (DT),
K-Nearest Neighbours (kNN), Naive Bayes (NB), Support
Vector Machine (SVM), Randon Forest (RF), Hidden Markov
Models (HMM), and Multi Layer Perceptrons (MLP). They
use different datasets, e.g. UniMiB-SHAR [15], HHAR [39],
containing 3-axial accelerometer and/or gyroscope data col-
lected using wearables or smartphones while people perform-
ing different activities. All these studies used sliding windows
for data segmentation with different degrees of overlap. Then,
they evaluated their models following the standard K-Fold
CV, and some of these studies also applied LOSO evaluation
[15]–[17]. The results with LOSO show a significant drop in
performance. However, such a drop is attributed solely to the
variability on the way that different subjects perform the same
activities, while the bias because of statistical dependence
between consecutive windows and random training/test splits
is overlooked. The bias introduced is independent of the input
features (Fig. 2), feature extraction, and the normalization
technique (Fig. 3).

(a) Raw signal feature vector

(b) Magnitude feature vector

Fig. 2: 5-fold CV vs LOSO: reported accuracy comparison
from Micucci et al., [15]

Other studies rely on Deep Learning approaches for
HAR [18]–[22]. The most common approaches are CNNs,
LSTMs, or the combination of both. The datasets used in

1https://scikit-learn.org/stable/modules/cross validation.html#cross-validation-
iterators-for-grouped-data

Fig. 3: Reported F1-Score of a RF classifier from San-
Segundo et al. [16].

this studies are UCI-HAR [40], WISDM [41], which also
contains 3-axial acceleration and gyroscope data. They use
sliding windows and evaluate their models using random
training/validation/test splits, K-Fold CV, and LOSO. The
results also show a siginificant drop in performance using
LOSO with respect to random paritioning and standard K-
Fold methods. It is important to note, in [22], that the
performance is overestimated using both, overlapping and
non-overlapping sliding windows (Fig. 4).

The works of Bouchabou et al. [23] and Gómez Ramos et
al. [24] use a different type of data, binary motion and contact
sensors, from the CASAS benchmark dataset. Specifically,
the Aruba and Milan datasets are used in those studies. Both
approaches applied overlapping sliding windows of different
sizes and random data partitioning with different ratios.
Although both works use different approaches their results are
comparable, f-score above 95%. In [23], the authors claim a
“better generalization” obtained by means of a random shuffle
before splitting, overlooking the negative effect of random
splits after sliding windows data segmentation.

Yan et al. [26] propose a HAR model based on GNNs.
They used data from the MHEALTH, PAMAP2 and their
own dataset TNDA-HAR. The raw input data is transformed
into a graph representation based on the Pearson correlation
coefficient between the sensors channels signals. Each chan-
nel represents a graph vertex, and a correlation of a pair
of vertices above 0.2 implies an edge. A GNN model is
trained to encode the graph, followed by two fully connected
layers as the final classifier. The authors report accuracies
of 98.18% for PAMAP2, and 99.07% for MHEALTH. But
those accuracies are overestimated due to the use of random
training/test sets split, which is seen in the source code
provided by the authors.

Wang et al. [27] compared the effect on performance of
different data augmentation methods using UCI-HAR, USC-
HAD [42], MotionSense [43] and MobiAct [44] datasets.

Fig. 4: Reported results from Mekruksavanich and Jitpat-
tanakul [22].

https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators-for-grouped-data
https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators-for-grouped-data


They segmented the data using sliding windows with 12.5%
to 50% overlap. They applied random training/test splits
and additionally a subject-independent 5-fold CV for the
MotionSense dataset. The F1-scores reported for all the
experiments using randomly partitioned data were: UCI-HAR
98.28, MotionSense 99.35, USC-HAD 92.28 and MobiAct
98.32. In accordance to previous findings, in the experiments
with a subject-independent CV for the MotionSense dataset,
the F1-score dropped from 99.35 to 92.10.

Huang et al. [28] proposed Channel-Equalization-HAR, a
variation of the normal CNNs. They used UCI-HAR, OP-
PORTUNITY [45], UniMiB-SHAR, WISDM, PAMAP2, and
USC-HAD datasets. The data was segmented using sliding
windows of different sizes with 30%, 50%, 78% overlap.
Then, they applied a random train/test split using a 7:1:2 ratio.
The reported F1-score for UCI-HAR was 97.12%, similar
to the ones reported in [22], [27]. Likewise, the reported
accuracy on the WISD dataset was 99.04%, even higher than
the one reported in [20] which followed the biased approach.
The same can be observed for the USC-HAD dataset with
a reported F1-score of 98.93%, higher than reported in [27]
which also has the problem. With the PAMAP2 dataset, the
reported F1-score is 92.18% which is similar to our own
experiments using random training/test set splits, shown later
in Section IV.

Luo et al. [29] proposed a Binarized Neural Network
for HAR, that moves the computation to the edge. They
used the Radar HAR dataset [46], UCI-HAR and UniMib-
SHAR datasets, applying sliding windows data segmentation
followed by a random training/test split, in a 80:20 ratio for
the Radar HAR dataset, and a 70:30 ratio for the UCI-HAR
and UniMib-SHAR datasets. The F1-score reported for the
Radar HAR dataset is 98.6%. The reported F1-score for the
UCI-HAR dataset is 98.1%, similar to the ones reported in
[22], [27], [28] which followed the same biased approach. The
reported F1-score for the UniMib-SHAR dataset is 93.3%,
even higher than the one reported in [15] which is also
overestimated.

Wu et al. [30] proposed a spatio-temporal LSTM model
using data from a pedal wearable device attached to the
shoe’s tongue area. The approach combines a GNN model
for the spatial features and a LSTM for the temporal patterns
to recognize five different activities. A sliding window of
200 samples was used for data segmentation. The segmented
data was randomly split into training/test sets. The reported
results show a perfect F1-score of 1.0 for the Sitting and
Down the Stairs activities, 0.96 and 0.97 for Standing and
Walking respectively, and 0.83 for Up the Stairs. Once again,
the followed approach shows overestimated results.

Garcia-Gonzalez et al. [31] used their own dataset contain-
ing accelerometer, gyroscope, magnetometer and GPS data
from smartphones. They evaluated different traditional ML
algorithms: SVM, DT, MLP, NB, k-NN, RF and Extreme
Gradient Boosting (XGB). Data segmentation and feature
extraction were performed using sliding windows from 20
to 90 seconds with 1 second step size, i.e, at least 95%

overlap. Then, a stratified k-fold CV is used to evaluate
the different models. While keeping similar distribution of
the samples per class, this method does not prevent that
consecutive windows are assigned to two different folds.
Hence, the reported accuracy, 92%, is overestimated.

IV. UNBIASED MODEL EVALUATION

This section shows that the same approach can lead to a
considerable difference in accuracy depending on the data
segmentation and training/test sets partition strategies.

A. Datasets

We evaluate whether the problem described in section II
affects in the same way datasets with different data modal-
ity. We used the MILAN dataset [47] from the CASAS
benchmark dataset collection2, which contains binary data
from motion and contact sensors, and the PAMAP2 [34]
and MHEALTH [33] datasets, which contain accelerometer,
gyroscope and magnetometer data from wearable on-body
sensors.

a) MILAN: The sensors mounted in this smart home
testbed environment included 28 motion, 3 door contact
and 2 temperature sensors. The activities’ “start” and “end”
are annotated. Samples which fall outside these markers
have been assigned the “other” class. This dataset is highly
imbalanced, the “other” being the dominant class.

b) PAMAP2: This dataset contains data collected from
9 subjects doing 12 different physical activities, using IMUs
attached to the wrist, chest and ankle while performing
everyday, household and sport activities. Each sensor includes
two accelerometers, one gyroscope and one magnetometer
producing 3-axial data at a sampling rate of 100Hz.

c) MHEALTH: This dataset contains data of 10 vol-
unteers performing 12 physical activities. The sensors were
placed at subjects’ chest, right wrist and left ankle. The data
comprise 3-axis accelerometer, gyroscope and magnetometer
signals collected at a sampling rate of 50Hz. The sensor
placed at the chest also provides 2-lead ECG measurements,
but those data points were not used in the experiments.

B. Data segmentation and feature extraction

We perform data segmentation using a fixed-size sliding
windows approach, proposed in [35] and expanded in [36].

a) MILAN: We used a window of k sensor events
because binary/motion sensors do not fire a sample at a
constant rate. The window size was 30 with a step-size of 1,
based on empirical evaluation as presented in [35], [48]. The
windows were created based on collection date to facilitate
the independence between training and test sets during model
evaluation. The last sensor event in the window defines the
label and the preceding events in the window define its
context. Following this approach we can have a prediction
every time a new sensor event arrives, achieving a near-
real time recognition. Then, feature vectors are calculated for
each window following the approach presented in [35], [48].

2CASAS benchmark dataset collection: http://casas.wsu.edu/datasets/

http://casas.wsu.edu/datasets/


We transformed the hour-of-day and day-of-week to sine and
cosine pairs to capture the equidistant relation between time-
based cyclical values.

b) PAMAP2: This dataset was segmented using sliding
windows of 5.12 seconds with 1 second shift, following the
approach of its original publication [34]. Since the data were
sampled at 100Hz, the windows span 512 sample readings
with step-size of 100 samples. This data was used to train a
classification model based on GNNs. Therefore, the training
data was transformed to a graph representation where the
vertices correspond to the different channels of the sensors’
signals. The edges are defined by means of the Pearson’s Cor-
relation Coefficient between the channels, where a correlation
threshold above 0.2 implies an edge between two channels.

c) MHEALTH: Following the protocol in [40], [49], we
segmented the data using a sliding window of 2.56 seconds
with 50% overlap. Since this dataset was sampled at 50Hz,
the windows have 128 samples with 64 samples overlap.
For feature creation, we first transformed the window data
into a graph representation in the same way as described for
PAMAP2 dataset. Then, the activity graphs were used to train
a GNN-based classification model.

C. Classification models and evaluation strategies

To measure the effects of the biased approach using clas-
sification models of different nature, we trained a RF and a
GNN-based classifiers. The RF classifier uses binary sensor
data, and the GNN-based model uses on-body IMU sensors.

a) MILAN: After feature extraction, the model was
evaluated using the 5-fold CV approach. First, we partitioned
the data randomly using the StratifiedKFold class, from the
scikit-learn python library [50], with the shuffle parameter
set to True. Then, in a second experiment, we used the
StratifiedGroupKFold CV scheme [50]. This scheme splits the
data into folds with non-overlapping groups, preserving the
percentage of samples per class. In our case, the groups were
determined by the collection date of the raw data samples.

b) PAMAP2 and MHEALTH: Most of the presented
studies followed a conventional Deep Learning approach
for HAR, e.g., CNN, LSTM or a combination thereof. To
check if the overestimation bias affects other Deep Learning
models, we trained a 3-layer GNN implemented using the
Graph Convolution presented in [51], followed by two fully
connected layers and softmax layer for final classification. We
split our segmented data in a 6:2:2 ratio used for training,
validation, and final model evaluation, respectively. We first
partitioned the data randomly, and later on using the Strati-
fiedGroupKFold approach, determined by subject id. We did
the same for both, PAMAP2 and MHEALTH datasets. In
the case of PAMAP2, subjects 101 and 107 were used for
validation, subjects 103 and 105 for testing, and the remaining
subjects for training. For MHEALTH dataset, subjects 6 and
10 were used as validation set, subjects 2 and 9 for testing
and the rest for training. After hyper-parameter optimization
and finding the best parameters combination, the model was
updated with the entire training data, including the training

and validation subsets. The model was evaluated using the
hold-out test set.

D. Results and discussion

Table II shows that window-based data segmentation and
random data splits lead to misleading results.

TABLE II: Classification performance comparison on MI-
LAN, PAMAP2 and MHEALTH datasets.

Partitioning MILAN (RF) PAMAP2 (GNN) MHEALTH (GNN)

b. acc f1-score b. acc f1-score b. acc f1-score

Random (biased) 93.53 86.74 89.36 90.19 98.00 97.99
Grouped (unbiased) 55.59 58.49 81.59 81.73 81.59 81.73

a) MILAN: The performance with random splits is
higher in all sixteen activities (Fig. 5), in concordance to
Bouchabou et al. [23] and by Gómez Ramos et al. [24].

be
d_t

o_t
oile

t
cho

res

de
sk_

act
ivit

y

din
ing

_rm
_ac

tiv
ity

ev
e_m

ed
s

gu
est

_ba
thr

oo
m

kit
che

n_a
cti

vit
y

lea
ve

_ho
me

mast
er_

ba
thr

oo
m

mast
er_

be
dro

om
_ac

tiv
ity

med
ita

te

morn
ing

_m
ed

s
oth

er
rea

d
sle

ep

watc
h_t

v

Ac
cu

ra
cy

 (%
) 95 99 99 98

88 97 90 97 96 94 100 93
74

95 93 96

77

41

79

45

9

85
75 75

55 61
80

2

32

81 84

59

ADL Activities

Random
Grouped

Fig. 5: Accuracy obtained for each activity on the Milan
dataset.

These results show that in both experiments the minority
classes (morning meds, evening meds) are misclassified. The
reason is because those activities occur in the same room,
triggering the same set of sensors. However, it is important
to point out that the biased model classified these activities
with an accuracy over 88%. On the contrary, the accuracy on
the same classes with the unbiased approach is under 10%.
Similarly, the same effect occurs with the majority class,
“other”. While the biased model produced an accuracy of
74% on the “other” class, the corrected model just obtains a
32% accuracy on this pseudo activity.

b) PAMAP2 and MHEALTH: The results obtained
with the GNN-based classification model on PAMAP2 and
MHEALTH datasets also show a performance overestimation
when the model is trained and evaluated on randomly par-
titioned data. In the PAMAP2 dataset the accuracy and f1-
score dropped ≈ 9%, when the data is partitioned following
a group-based approach. In MHEALTH the performance
decreased ≈ 16% (See Table II). These results confirm
that the “perfect” accuracy reported by Yan et al. [26] is
overestimated due to the windowing mechanism and random
training/test set splits.

The confusion matrices for PAMAP2 and MHEALTH
datasets are shown in Fig. 6a and 6b. They show that GNN-
based classification models produce consistent results on
both datasets. The corrected models misclassify the standing



(a) PAMAP2

(b) MHEALTH

Fig. 6: Confusion matrices of the accuracy on PAMAP2 and
MHEALTH datasets.

activity in both, PAMAP2 (68%) and MHEALTH (39%)
datasets. Contrary, with the biased approach the accuracy on
the standing activity increases to 92% for PAMAP2 and a
perfect 100% for MHEALTH.

V. LESSONS LEARNED

Model performance is affected by the data partition strategy
that follows the window-based data segmentation. The results
show that the performance of the models on randomly par-
titioned data is overestimated, regardless of the used dataset
and classification model. The data imbalance negatively af-
fects the performance of the classifier but its effect is more
acute when the independence between training and test sets
are guaranteed. Conversely, it may be unnoticed following a
biased approach. If data segmentation is performed using a
windowing mechanism, the independence between training
and test sets, or between folds in CV, must be carefully
considered. Hence, data partition must not be performed at
random.

The group-based approach, used in this work, is a good
alternative for guaranteeing an unbiased model evaluation.
Splitting the data by a third-party parameter, chosen per use-
case basis, gives the flexibility to create unbiased scenarios
for evaluation even for single-subject datasets.

VI. CONCLUSIONS

Our study reviewed HAR works with approaches that lead
to model performance overestimation to raise awareness of
the HAR community of this ongoing problem. Due to pub-
lications with biased overestimated results, fair approaches,
with correct unbiased methods, may be disregarded due to
the erroneously perceived low accuracy. We described and
explained the downside of using sliding windows for data
segmentation and feature extraction, followed by a random
k-fold cross validation for model evaluation. We identified
previous studies, including present day publications, where
the reported performance is overestimated. The findings sug-
gest that this is a recurrent practice with negative effects that
are often disregarded by HAR practitioners.

Importantly, we are not implying that sliding windows and
k-fold cross validation should not be used in HAR. Those are
well established methods whose usage has been empirically
justified. However, the data samples assigned to each fold
should not be chosen at random. Our experiments used dif-
ferent classification models types and datasets with different
distribution, nature and characteristics, proving that the bias
introduced by the discussed issue is independent of the data
modality and the classification model. The performance drop
with an unbiased evaluation is significant to the point where
those highly overestimated models would become impractical
or even useless in real settings.
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[24] R. Gómez Ramos, J. Duque Domingo, E. Zalama, and J. Gómez-
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