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Abstract
Digital Twins (DTs) are the digital equivalent of physical entities
that facilitate, among others, monitoring and decision-making, thus
helping extend the longevity of the twinned entity. DTs with auto-
mated decision-making capabilities require explainable inference
mechanisms, especially for critical infrastructures such as water
networks. Here we introduce 3K, a DT framework that aims for
knowledge-enriched inference that is explainable and fast, by syn-
thesizing knowledge representation (semantics) and knowledge
discovery methods. 3K constructs a knowledge graph, which is be-
coming a mainstreamway of metadata storage in DTs, and proposes
a new method that can run on both sensor data and knowledge
graphs to learn semantic association rules. The rules represent the
expected working conditions of the DT and we argue that when
combined with domain knowledge in the form of ontological ax-
ioms, semantic association rules can help perform downstream
tasks in DTs, including extending the longevity of the twinned
entities such as an Internet of Things (IoT) system. Furthermore,
we demonstrate the 3K framework in a water distribution network
use case and show how it can be used for downstream tasks.

CCS Concepts
• Information systems → Data mining; Association rules;
• Computing methodologies → Rule learning; Neural net-
works; • Software and its engineering→ Semantics; • Com-
puter systems organization→ Embedded and cyber-physical
systems.
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1 Introduction
Digital Twin (DT) is a digital equivalent of a physical entities [7, 13]
that has many successful applications across different domains in-
cluding manufacturing [12], building management [30] and smart
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farming [24]. DTs aim to, among others, facilitate monitoring and
decision-making and by doing so extend the longevity of the un-
derlying system such as an Internet of Things (IoT) system [31].
The longevity, of an artifact, can be briefly defined as fulfilling its
intended purposes for a certain time, or as long as a defined set of
conditions hold [22]. In the context of cyber-physical systems where
DTs have been frequently utilized [25], longevity relates to both
software and hardware components.

In this paper, we propose the 3K framework, a knowledge-enriched
decision-making framework for DTs that can be used in various
tasks, including extending the longevity of the twinned system.
Decision processes in DTs, especially in critical infrastructures
where high-stake decisions are made, have high explainability re-
quirements due to the associated risks, making black-box Artificial
Intelligence (AI) models inadequate in these cases. Rule-based meth-
ods using Semantic Web technologies such as ontologies [8] and
knowledge graphs [11] satisfy the explainability requirements [10].
However, they lack adaptation capabilities to learn from data as in
Machine Learning (ML) methods and act accordingly. Therefore,
3K is a Neurosymbolic approach to explainable decision-making in
DTs that utilizes both Semantic Web technologies and ML methods.
It consists of 3 modules; i) knowledge representation, ii) knowledge
discovery, and, iii) knowledge-enriched inference, hence 3K.

The knowledge representation part (Section 3.1) utilizes seman-
tics, ontologies [8] and knowledge graphs [11], to represent static
information in a DT, which is becoming a mainstream way of meta-
data storage in DTs [15, 19]. Semantic technologies add a layer of
abstraction to the system and data model, thus decoupling them
from further system updates which can help prolong its lifespan.

Knowledge discovery is the task of identifying meaningful pat-
terns in the data [5] with many applications in the scope of DTs
mainly to understand normal working conditions of certain com-
ponents and processes and detect abnormalities based on their
expected behavior [2, 4, 20]. Association Rule Mining (ARM), being
a common knowledge discovery method that aims to learn asso-
ciations between features of a given dataset in the form of logical
rules [1], is not yet well-studied in DTs. The state-of-the-art ARM
in DTs does not consider DT as a whole but only focuses on cer-
tain sub-components or tasks. As part of the knowledge discovery
module (Section 3.2), we propose a new ARM method that runs on
both static DT metadata and dynamic sensor data to learn semantic
association rules that express patterns in DT data as a whole.

Lastly, the knowledge-enriched inference module (Section 3.3)
performs reasoning over the learned semantic association rules
and ontological axioms created by domain experts as part of the
knowledge representation module. An example inference process
in the scope of longevity is detecting system components running
under unusual conditions to prevent future malfunctions and thus
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extend their longevity. Working with rules satisfies the explainabil-
ity requirements for high-stake decision making especially in DTs
of critical infrastructures, e.g., to comply with certain requirements.
It also allows easy integration of domain knowledge.

We demonstrate the 3K framework in a water distribution net-
works use case in Section 4 and emphasize its important aspects
in Section 5. The goal of the 3K framework is not to propose a DT
architecture, but a set of modules that DTs should have to support
knowledge discovery over the entire DT data and make explainable
inferences for various tasks including extending longevity.

2 Related Work
This section describes the related work on how semantics (knowl-
edge representation), knowledge discovery, and knowledge-enriched
inference are utilized in the scope of DTs.

2.1 Semantics in Digital Twins
Semantic technologies such as ontologies and knowledge graphs
have been increasingly used in DTs [15, 19]. An ontology in com-
puter science is defined as ‘a formal, explicit specification of a shared
conceptualization’ [8], while knowledge graphs are databases of
structured semantic information often based on an ontology [11].
Semantics add a layer of abstraction over system and data models
used in DT implementations. By doing so, they reduce the number
of errors on the data interpretation level and thus can help extend
the longevity of the systems. Other main objectives of semantics in
DTs as reported in [15] are to establish semantic interoperability
among various subcomponents and to infer semantic relations be-
tween DT data and components. However, semantics have not yet
been widely used as part of learning and reasoning tasks in DTs,
which is one of the goals of this paper.

2.2 Knowledge Discovery and Inference in
Digital Twins

A common way of knowledge discovery is to apply data mining
methods, specifically ARM, which refers to learning associations
between features of a given dataset in the form of logical implica-
tions [1], e.g., 𝑋 → 𝑌 , which is read as ‘if X then Y’. X is called the
antecedent of the rule while Y is called the consequent. In contrast
to conventional applications of ARM, DTs include heterogeneous
data from diverse sources including time series sensor data, and
static metadata regarding DT system components. Association rules
are typically mined from a single type of data, such as tabular [9] or
graph data [23], and for a specific application [2] that are not able to
provide a full view of how a DTworks as a whole. Finding a suitable
representation that can be used for ARM for a diverse set of data
as in DTs is challenging. In addition, most of the state-of-the-art
ARM algorithms struggle to run on big data [17, 26] which can be
the case in large-scale DTs after combining various data sources.

The state-of-the-art knowledge discovery in DTs focuses on data
integration, and learning patterns from specific system compo-
nents or for a certain task. For instance, Mohammadi et al. [21]
use knowledge discovery methods on smart city DTs that incor-
porate structured and unstructured data from multiple sources. A
VR-based interactive user interface is provided to explore various
aspects of the DT including health and environment. However,

data mining methods are not utilized and reported as future works.
Donkers et al. [4] combines semantic web technologies with knowl-
edge discovery methods in a smart building DT use case. Semantic
web technologies are used to collect and integrate data from var-
ious sources. A data analysis method described in [18] is used to
analyze the impact of data features on the comfort of the building
occupants. Liu et al. [20] utilized the Apriori [1] algorithm to mine
association rules among risk factors in hoisting construction as
part of a construction DT. Cai et al. [2] use FP-Growth [9] ARM
algorithm in a DT of aircraft assembly process to detect quality
deviations during the assembly.

Our approach. In contrast to the existing knowledge discovery
methods applied as part of DTs, we propose to run ARM algorithms
on both sensor data and knowledge graphs describing the context
in which the sensor data is obtained, hence both static and dynamic
parts of DT data. In this way, we aim to obtain a full overview of
how the DT system should behave according to the mined patterns.
In addition, we propose a DL-based ARM approach that can learn
a concise set of high-quality semantic association rules. To the
best of our knowledge, there has been no study that combines
ontological axioms and semantic association rules for inference or
decision-making in DTs.

3 3K: Knowledge-Enriched Digital Twins
This section describes the 3K framework that aims for explain-
able inference in DTs. Figure 1 illustrates the entire pipeline of
operations for the proposed 3K framework.

3.1 Knowledge Representation
Knowledge representation in DTs refers to the semantic modeling of
the DT system and its components, often in the form of a knowledge
graph with an underlying domain ontology. The domain ontology
contains the vocabulary used in the domain to which the Physical
Twin (PT) belongs. In addition, the ontology may also contain a
set of logical axioms that represent constraints over the system
components as well as sensor data. One simple example from the
water distribution network domain is when two pipes are attached to
each other and have no other connections except on the opposite sides
of the pipes, the water flow in both pipes has to be the same. These
constraints representing a specific domain knowledge, together
with association rules learned from DT data, will be used in the
knowledge-enriched inference module for discrepancy detection.

In thismodule, a knowledge graph is constructed fromDT system
metadata (asset descriptions) and a domain ontology via semantic
matching. The domain ontology contains the vocabulary used in the
domain to which the physical twin belongs. Asset descriptions refer
to the files that contain metadata about the system components.
The goal of semantic matching is to map asset descriptions to the
classes, relations, and properties in the domain ontology. Then, the
obtained mappings correspond to a knowledge graph describing
all the assets in the system.

One example of semantic matching in the literature is done via
Natural Language Processing (NLP) methods [16] based on the
semantic descriptions (can be regarded as asset descriptions) of IoT
devices. Another way of matching, when the number of concepts
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Figure 1: 3K: knowledge representation, knowledge discovery, and knowledge-enriched inference modules.

in the ontology is low, is by pre-defining a set of mappings between
the asset descriptions and the ontological elements.

3.2 Knowledge Discovery
We propose an ARM algorithm that utilizes dynamic sensor data
and static system metadata represented as a knowledge graph for
knowledge discovery in DTs. The role of knowledge graphs is to
provide context to the sensor data during the rule learning process.
In this way, we aim to discover patterns not only based on sensor
measurements but also on the context in which they are placed.

An association rule learned from sensor data looks as follows:
‘if sensor1 measures a value in range R1, then sensor2 must measure
a value in range R2’. On the other hand, association rules with
semantics from knowledge graphs are more generically applicable
and more explainable: ‘if a sensor S placed inside component C that
has a set of semantic properties S measures a value in range R1, then
sensor S2 placed inside component C2 with semantic properties S2
will measure a value in range R2.’ This second rule relates to not
only sensor1 and sensor2 as in the first rule, but it rather describes
a certain context and measurements taken in that context which
makes it more generically applicable. The semantic properties may
correspond to the components C and C2, or their neighbors on the
knowledge graphs.

As one way to implement the proposed method, we developed
a DL-based ARM approach which can be found in [14]. The pro-
posed method is illustrated in Figure 3. Combining sensor data
with knowledge graphs may result in big high-dimensional data in
the case of large-scale DTs. As the state-of-the-art ARM methods
struggle on big-high dimensional data [17, 26], a DL-based ARM
method that makes use of denoising Autoencoders [27] is proposed.
An Autoencoder is a neural network architecture that creates a
lower dimensional representation of a given input referred to as
the code layer, and then reconstructs the input from the code layer.

First, sensor data is enriched by the corresponding semantic
properties from the knowledge graph. Each sensor has a representa-
tion on the knowledge graph and the binding refers to the mapping

of sensor data to the corresponding node on the knowledge graph.
Semantic enrichment refers to the coupling of sensor data with
the properties of the sensor node itself, the properties of the node
that describes where the sensor is placed, and/or the neighbors of
those nodes in the knowledge graph which would provide a wider
context. Second, the semantically enriched sensor data is vectorized
by discretization and one-hot encoding. The third step is to create
a neural representation of the vectors using an under-complete
denoising Autoencoder. In the output layer, the Autoencoder has
probability distributions per input feature. We leverage the recon-
struction feature of Autoencoders to learn and extract associations
between input features. As the last step, semantic association rules
are extracted from the neural representation as described below.

Rule extraction example. Figure 2 illustrates a rule extraction
example from a trained Autoencoder. Assume that a denoising Au-
toencoder is trained on 2 features: 𝑓1 = {𝑎, 𝑏}, 𝑓2 = {𝑐, 𝑑, 𝑒}. To test
whether 𝑓1 being 𝑎 implies 𝑓2 being 𝑐 , a test vector with equal prob-
abilities per class value is created ([0.5, 0.5, 0.33, 0.33, 0.33]), and
then 𝑓1 (𝑎) is marked with 100% probability: [1, 0, 0.33, 0.33, 0.33]
(the first 2 numbers correspond to 𝑓1 values and the remaining 3
correspond to 𝑓2 values). Assume that a forward run on the trained
Autoencoder returns [0.97, 0.03, 0.01, 0.05, 0.94]. Since the proba-
bility of 𝑓2 (𝑒) is high (higher than a given threshold, e.g., 90%),

Figure 2: An association rule extraction example from a
trained Autoencoder.
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Figure 3: Learning semantic association rules from sensor data and knowledge graphs [14].

we conclude that 𝑓1 (𝑎) → 𝑓2 (𝑒). The full algorithm to create test
vectors can be found in [14].

3.3 Knowledge-Enriched Inference
This section describes making inferences with the learned semantic
association rules and domain knowledge represented as axioms of
a domain ontology. In comparison to black box DL-based inference,
we hypothesize that this form of inference is explainable and faster,
as checking whether a rule holds is a simple comparison operation.

Preprocessing rules. Depending on the inference task, a rule
quality metric that applies to the task is selected and low-quality
rules are filtered out. A plethora of rule quality metrics are proposed
in ARM literature [17]. Next, the consistency of the selected rules
is checked with a logical reasoner based on the axioms defined in
the ontology, and inconsistent rules are eliminated.

Constructing hypotheses. The pre-processed rules are then
grouped together to form so-called hypotheses which refers to nor-
mal working conditions of the DT. We identified 2 potential direc-
tions to form hypotheses. In the case of having labeled abnormal
data, the first approach relates to learning associations between
the rules and abnormalities. We aim to associate a certain subset of
rules with a certain abnormality, or in general to an abnormality,
hence forming hypotheses. We call these abnormalities discrepan-
cies between PT and DT since they refer to a part of physical space
that is not yet reflected in the DT. The second is a neuro-symbolic
approach in which the rules are grouped based on their similarity in
the case of not having labeled abnormal data. In this case, grouping
can be based on the applicability of the rules on certain components
in the DT or the overlap among themselves.

Inference time. Hypotheses are checked on novel unseen data,
and we argue that the hypotheses that do not hold for a certain time
act as a good indication that a discrepancy exists at a certain part of
the DT system. Another example application of the hypotheses is to
understand whether a system update, e.g., a software or hardware
update, will cause disruptions by checking their validity after the
update in a controlled environment. The rules and the hypotheses
are periodically updated based on the incoming sensor data and
system changes such as static data changes on the knowledge graph.

4 Industrial Example: Drinking Water
Distribution Networks

The proposed framework has been implemented as a part of a
DT of a water distribution network [3], with the exception of the

knowledge-enriched inference module which is currently under de-
velopment, and the source code can be found in:https://github.com
/DiTEC-project/semantic-association-rule-learning.

4.1 Knowledge graph construction
Conventional DTs in the water distribution networks domain utilize
physical simulation tools such as EPANET 1 to model the system
and test various scenarios. LeakDB [29] and L-Town [28] are two
artificially generated realistic water distribution network datasets
that are based on EPANET. The datasets contain .inp files which
describe the simulated water network and provide metadata (can
be seen as asset descriptions).

At the time of writing this paper, no ontologies are available for
the domain of water distribution networks. Therefore, we utilized
the data schema of the EPANET software to map asset descriptions
to the vocabulary described as part of the data schema in a rule-
based fashion as the number of concepts is low. Figure 4 shows an
excerpt from the knowledge graph constructed using the LeakDB
dataset. The figure shows nodes of different types including pipes
and junctions, where each node contains a set of properties such as
the diameter of a pipe that is shown on the right side of the figure.

1https://www.epa.gov/water-research/epanet
2https://neo4j.com/

Figure 4: An excerpt of a knowledge graph constructed from
the LeakDB dataset on Neo4j user interface2.

https://github.com /DiTEC-project/semantic-association-rule-learning
https://github.com /DiTEC-project/semantic-association-rule-learning
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Table 1: Association rule examples with (top) and without
(bottom) semantics learned from LeakDB dataset.

Association Rule Support Coverage

if a water flow sensor s1 is inside a Pipe p1
with length 843-895, and a water demand
sensor s2 inside a Junction j1 that is con-
nected to p1 measures 13-17, then s1 must
measure between 23-31.

0.5 0.54

if the water flow sensor inside Pipe_28
measures between 23-31, then the water
flow sensor inside Pipe_18 must measure
between -767–471.

0.43 0.52

4.2 Semantic association rule learning
A set of semantic association rules is learned based on the knowl-
edge graph constructed in the previous step and the sensor data
using the proposed method in Section 3.2. The evaluation is based
on the rule quality criteria that are commonly used in the ARM
literature such as support, confidence, coverage, Zhang’s metric,
and execution time [17]. The quality of the rules is compared ex-
tensively with the state-of-the-art ARM methods and discussing
the results is beyond the scope of this paper, also due to the space
restrictions. Please refer to [14] for the extensive evaluation.

Table 1 shows two association rules examples learned from the
LeakDB dataset. The bottom row shows an association rule learned
from sensor data only, which describes a certain condition that is ap-
plicable to two sensors specifically, namely the water flow sensors
inside Pipe_28 and Pipe_18. On the other hand, the top row shows
a semantic association rule that is learned from both knowledge
graphs and sensor data. It describes a certain pattern that is inde-
pendent of individual sensors and is applicable when the antecedent
of the rule holds. We say that the first rule is more explainable as it
provides more context via the semantic properties as opposed to
the second rule which only includes sensor measurements.

The support value is the percentage of transactions (data in-
stances) with a certain item or rule among all transactions, while
the coverage refers to the percentage of transactions for which the
rules are applicable. As both support and coverage values are higher
for the semantic association rule given in the first row, we conclude
that the semantic association rules are more generically applicable.
We argue that this will result in requiring less number of rules in
the knowledge-enriched inference step, to have full coverage over
the dataset, and thus speeding up the inference further.

4.3 Fast and Explainable Inference in Digital
Twins

This module is currently under development. As described in Sec-
tion 3.3, the semantic association rules are used with ontological
axioms tomake inferences. As an example, if the rules listed in Table
1 do not hold for a certain period of time, this may indicate a water
leakage in one of the pipes. Since there are no open-source water
distribution network ontologies, we are collaborating with domain

experts at a water distribution company, Vitens3, to create an on-
tology. We argue that the semantic association rules together with
the ontological axioms represent the expected working conditions
of a water distribution network.

As a first step, we plan to detect abnormalities in the system
such as water leakages and sensor degradations. Besides the statis-
tical evaluation of the semantic association rules with rule quality
criteria, their capability to detect abnormalities will also be used
in further evaluation of our proposed rule learning approach. The
proposed approach will be compared with both other rule-based
approaches as well as other methods that are both task-specific
such as leak detection methods and other more generic abnormality
detection methods. Furthermore, the evaluations will be repeated
on datasets from different domains such as the energy domain, as
also performed in [14] for semantic association rule learning on
LBNL fault detection dataset [6].

5 Discussion
This section discusses important aspects of the 3K framework.

Knowledge-enriched Digital Twins. Semantics technologies
have been increasingly used in DTs for various tasks as pointed
out in recent literature reviews [16, 19]. Despite providing highly
valuable information regarding the DT systems, semantics are not
utilized as part of learning tasks in DTs. Our proposed 3K framework
includes the first case where semantics, i.e. knowledge graphs,
makes a significant improvement in a learning task in DTs, namely
learning association rules, from sensor data by learning rules that
are more generically applicable and reflect DT systems as a whole
rather than sensor data only. We argue that there is a huge potential
in the direction of utilizing semantics in DTs to facilitate learning.

Explainable decision-makingwithNeurosymbolicAI.Knowl-
edge discovery methods such as ARM are used in DTs to detect
abnormalities in DTs as they are explainable methods to decision-
making. However, the existing applications of ARM in DTs give
limited consideration to the characteristics of DT data such as het-
erogeneity and high dimensionality. DTs of large-scale systems
can have a high number of sensors with various types deployed
which are treated as different data dimensions in ARM algorithms.
Moreover, state-of-the-art ARM methods are developed to run on a
single type of data such as tabular data, time series data, or graph
data. We argue that neural networks can help creating a common
neural representation of diverse datasets as in DTs in an efficient
way as they are also capable of handling big data. Therefore, in the
knowledge discovery module of our 3K framework, we provided the
first method in DTs to create a neural representation of a DT knowl-
edge graph and sensor data using Autoencoders, and extracted
association rules from the neural representation algorithmically,
making it a neurosymbolic approach.

Alternative neural representations of Digital Twin data.
3K framework utilizes an Autoencoder to create a neural repre-
sentation of the DT data. However, this is only an initial step and
other neural network architectures are to be experimented with
for their capability of representation learning from DT data. As
an example, Graph Neural Networks (GNNs) are better at captur-
ing graph-structured data, and new methods to integrate GNNs

3https://www.vitens.nl/
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and sensor data can be explored for better representation learning.
Other architectures are likely to necessitate new ways of extracting
associations from neural representations, which we also see as a
future research direction.

6 Conclusion and Future Work
This study proposed the 3K framework that aims for explainable
decision-making in DTs which can be used for various tasks includ-
ing abnormality detection that potentially extends the longevity of
the twinned system. It consists of knowledge representation, knowl-
edge discovery, and knowledge-enriched inference modules. The
knowledge representation module constructs a knowledge graph
from DT asset descriptions and a domain ontology by semantic
matching. Semantic association rules are learned from sensor data
and the knowledge graph using a Deep Learning (DL)-based ap-
proach to have a full overview of the behavior of the DT in the
knowledge discovery module. The proposed approach utilizes Au-
toencoders to create a neural representation of the DT data, and
extracts semantic association rules from the neural representation.

In future work, as part of the knowledge-enriched inference, we
plan to perform reasoning over the semantic association rules, and
ontological axioms to detect discrepancies between the DT and its
physical counterpart. Furthermore, we plan to evaluate our pro-
posed approach on various tasks across different domains to further
validate its efficiency alongside the statistical rule quality evalu-
ation. This includes both application-level tasks such as leakage
detection in water networks or fault detection in the energy domain,
as well as systems’ longevity-related tasks such as understanding
how would a new hardware or software update affect the system
based on the previously learned patterns and domain knowledge.

Acknowledgement: This work is funded by the project DiTEC:
Digital Twin for Evolutionary Changes in Water Networks (NWO
19454).
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