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ABSTRACT— Achieving precise perception models for
fully autonomous driving in diverse driving conditions re-
quires continuous online model training. In vehicular net-
works, federated learning (FL) facilitates this by enabling
model training without sharing raw sensory data. Addi-
tionally, clustered FL reduces communication overhead and
aligns well with the dynamic nature of these networks.
However, current literature on this topic overlooks critical
dimensions, including (1) the correlation between application
efficiency and the networking overhead, (2) the limited
vehicle storage, (3) the need for training with freshly captured
data, and (4) the impact of non-IID data and varying traffic
densities. To fill these research gaps, we introduce AR-CFL,
an Adaptive Resource-aware Clustered Federated Learning
framework. AR-CFL utilizes clustered FL to collectively
model the environment of connected vehicles, integrating
contributions from all vehicles and ensuring universal acces-
sibility to the refined model. AR-CFL dynamically enhances
system efficiency by adaptively adjusting the number of
clusters and specific in-cluster participant selection strategies,
and addresses the scenario of online car detection model
training on non-IID data under diverse conditions. Empirical
evaluations of AR-CFL reveal a high perception performance
of the optimized model, measured by metrics such as F1 score
and mean average precision, compared to some classical FL
scenarios, even with up to a 25% less participating nodes,
and a 33% reduction in long-range communication.

Index Terms—Vehicular Networks, Federated Learning,
Adaptivity, Clustering, Resource Efficiency, Collective Per-
ception, Deep Neural Networks.

I. INTRODUCTION

Autonomous driving comes with the promise of making
vehicles’ movements more predictable and less reliant on
the drivers’ decisions, hence increasing road safety and
throughput [1]. However, today’s vehicles have a narrow
perception of the environment due to limited onboard
sensing [2]. To cope with this, exchanging collected data
among vehicles (and all road users) can help achieve a
better perception of the environment [3]. The evolving
Vehicle-to-everything (V2X) technologies provide means
of communication between road users and enable them to
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collect and aggregate perception data cooperatively, in the
so-called Collective Perception (CP) [4].

Deep Neural Networks (DNNs) have a pivotal role for
individual perception and object detection in autonomous
driving. Currently, these networks usually undergo cen-
tralized training before deployment, utilizing data that
is limited in its coverage of various situations. Conse-
quently, DNN models trained on such data may exhibit
low performance in object detection, even with quality
management techniques in place [5], [6]. To overcome
this limitation, continuous online model training can be
leveraged to enhance adaptability and ensure robust object
detection performance for fully autonomous driving across
diverse conditions [3].

Federated Learning (FL) is a technique to train DNN
models from distributed data sources (e.g., using the
computational resources of each road user) [7]. With FL,
a central server maintains DNN models that are updated
with the incremental changes in its parameters provided by
the participants/clients. Since the data sent to the central
server is usually much smaller than the raw training data,
FL reduces communication requirements. Additionally, it
protects (up to some level) the data owners’ privacy,
which is important in many IoT applications (e.g., [8]),
by keeping the raw data stored locally.

Recent studies demonstrate that FL techniques can
train Deep Neural Networks (DNNs) with optimized
client-server interactions [9]. Moreover, FL is a good
paradigm for implementing cooperative perception tech-
niques among heterogeneous resources with non-IID data
(i.e., when the data from different parties has different
characteristics) [10], [11]. With these benefits in mind,
continually training a DNN employing FL (e.g., [12]) will
solve some of the challenges of autonomous driving.

Nevertheless, the communication requirements between
participants and the central server in FL may still be
too high in certain conditions. Hence, clustering can be
used to alleviate communication overhead. Clustered FL
works by grouping clients in close proximity into a cluster,



and having a cluster head collecting the updates from
the cluster members, aggregating them, and sending the
resulting update to the central server [13]. Clustered FL re-
quires extensive coordination and synchronization between
the involved entities, but it reduces the communication
requirements between clients and the central server, since
most of the training data exchange occurs inside clusters
[14]. Moreover, it can help enhance the performance of the
FL approach by decreasing the time required to train the
model up to an acceptable level of perception capability.

To leverage the benefits of Clustered FL at its fullest, we
present an Adaptive Resource-aware Clustered Federated
Learning framework, referred to as AR-CFL, specifically
designed to comprehensively explore and optimize fac-
tors impacting online learning and communication needs
within vehicular environments. Our innovative framework
incorporates adaptive mechanisms to optimize system ef-
ficiency dynamically. Additionally, leveraging AR-CFL,
we conduct a thorough investigation of training a DNN
vehicle detection model on non-IID data under diverse
conditions. We systematically compare and discuss the
outcomes obtained under different design decisions and
configuration options. In summary, this paper’s contribu-
tions are:

1) A novel framework (AR-CFL) that extends the ca-
pabilities of FL with adaptive clustering to provide
hierarchical FL (improving existing Clustered FL
solutions). This leads to boosting environment per-
ception capability, downsizing the exchanged data,
and providing a fast-converging training process.

2) A novel Dynamic Sampling concept, introduced to
more realistically consider the storage limitation of
vehicles in V2X networks.

3) A new Dynamic Cluster Members Involvement strat-
egy supports the dynamic adjustment of the client
set participating in the learning process within each
cluster.

4) Three new synthetic datasets, generated by employ-
ing the Carla simulator, constitute a comprehensive
evaluation benchmark.

5) The evaluation of AR-CFL with these datasets,
which provides interesting results and conclusions.

The rest of the paper is organized as follows. The related
work is presented in Section II. We further detail the
problem, particularly for a vehicular network scenario, and
motivate the need for a mechanism to exploit the benefits
of clustering in FL-based data analysis in Section III.
We provide an overview of the AR-CFL system model
in Section IV. Then, Section V presents the details of
AR-CFL. The evaluation results of AR-CFL are exhibited
in Section VI. Finally, Section VII concludes the paper
and presents future work.

II. RELATED WORK

In this section, we review the literature in two key
areas, Object Detection and Clustering, both using FL in
vehicular context, followed by pointing the research gaps.

A. FL-based Object Detection in Vehicular Context

The effects of employing FL-based techniques in ve-
hicular environments have been explored vastly in the
literature. For example, utilizing FL can yield perfor-
mance comparable to traditional centralized deep learning
while preserving user’s privacy locally [15]. Besides, the
detected objects should possess an acceptable level of
perception capability, which is essential to the success of
vehicular network applications (e.g., autonomous driving
[16]). Moreover, heterogeneity in the data sources (i.e.,
vehicle’s onboard sensors) makes the aggregation function
in the FL’s central server even more complex at the end
of each iteration [17]. Although employing FL reduces the
required communicated data in the learning process com-
pared to the centralized predecessors, resource allocation
and sensor deployment still remain challenging. However,
it is proved that by providing network management with
a multi-layer graph, such challenges can be overcome
[18]. Also, as a solution for varying client resources,
dynamically adjusting local training iterations and using
model compression to reduce communication overhead
during model exchanges have been introduced in the
literature [19].

Even though one of the critical motivations for employ-
ing FL is to preserve privacy, some violations are still
possible in the model exchange phase and client selection.
However, a multi-layer context-aware client selection and
aggregation can be utilized that degrades privacy violations
through encryption [20]. On the other hand, establishing
trade-offs has been studied to trade some privacy for
achieving higher utility, e.g., a hybrid FL model was
introduced by opting for clients with sufficient resources,
while others send their datasets to the central server [21].

B. Clustered Federated Learning in Vehicular Context

The idea of forming clusters of clients in an FL-based
learning technique in vehicular networks has been briefly
studied previously. In this vein, a novel approach for
cluster formation based on client data distribution has
been introduced by incorporating game theory principles
for client selection within clusters [22]. To adapt to the
dynamic client diversity in different VANET topologies, a
hierarchical inner-cluster Federated Learning model has
been presented alongside a weighted inter-cluster cy-
cling update algorithm [23]. In addition, imbalanced and
distribution-shifted training data was handled by a flexi-
ble Clustered Federated Learning (CFL) framework that
groups clients based on optimization direction similarities
to reduce training divergence [24]. Although CFL-based
object detection techniques in vehicular networks have
been studied briefly (cf., [25]), static formation of clusters
of vehicles (e.g., only those that are under the coverage of
a base station) and the limitation of dealing with mobility
of vehicles (i.e., vehicles handover) to enable continuous
training indicate further studies are required.
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Fig. 1: An example of improving object detection’s per-
formance by employing a two-level federated learning.

C. Research Gaps

Upon reviewing existing studies and frameworks, it
becomes apparent that several significant research gaps
warrant further investigation. The specific areas for po-
tential research directions are delineated as follows:

Application vs. Communication Network Integra-
tion: A notable gap exists in the field of CFL, particularly
in examining the relationship between exchanged data
volume, influencing communication overhead, and the
associated impact on application-related performance.

Limited Storage Consideration: Existing CFL tech-
niques overlook the consideration of limited storage on
vehicles, a non-realistic assumption that leads to an artifi-
cial performance evaluation.

Training on Freshly Collected Data: The imperative
need for training models with freshly collected data over
successive iterations rather than static datasets is insuffi-
ciently addressed in current CFL approaches.

Influence of Varied Traffic Densities: The literature
lacks exploration into the impact of varying traffic densi-
ties on online training systems within the context of CFL.

Dynamic Clustering Participation: The evaluation of
CFL approaches has not encompassed the exploration of
varying cluster counts and the involvement of a diverse
number of vehicles within clusters.

In this work, we endeavor to provide a solution, so-
called AR-CFL, that simultaneously considers the men-
tioned research gaps.

III. CASE STUDY: ONLINE OBJECT DETECTION
MODEL TRAINING

In Figure 1, we illustrate an online training of object
detection scenario that aims to utilize data collected by
road users in the detection procedure. The derived insights
can be helpful in real-world scenarios such as autonomous
driving. Here, we demonstrate how a system can benefit
from involving the clustering concept in designing a two-
level FL approach. In a conventional situational collective

perception approach, it has been proved that federated
learning manages to assist object detection [3]. However,
one can observe that the amount of exchanged data has to
be considerably increased to achieve an acceptable detec-
tion capability level. Furthermore, achieving the optimum
convergence time must be considered a significant perfor-
mance factor in such approaches. Hence, a modification
in the conventional FL mechanism is necessary to solve
the mentioned challenges.

As mentioned earlier, clustering can be employed to
achieve the required perception capability sooner with less
data exchange. In more detail, when a cluster is selected
as an FL client, a new set of learning rounds will be
initiated within the cluster. This inside-cluster learning
process is called Intra-Cluster Federated Learning. The
updated model (i.e., the outcome of inside-cluster training)
improves the trained model’s perception capability in the
upper level of FL. First, a multiple-round trained model
is collected from cluster members, which enhances the
perception level of the aggregated global model. Second,
less data will be exchanged between FL participants and
the central server. Instead, intra-cluster communicated data
will be added to the total exchanged data, which is
negligible. Moreover, the convergence time is decreased
due to stable and short communication within the cluster.

IV. PRELIMINARIES

In this section, we present the system model by intro-
ducing AR-CFL components, the model of data process-
ing, and the provided clustering model.

A. AR-CFL Model

The proposed approach comprises the main components
used in collective perception scenarios (see Figure 1).

1) Road User: A vehicle or any other entity partici-
pating in the process that generates data streams about
the surrounding environment is called a road user. In
our model, parked cars (i.e., illustrated in black) can also
create a cluster and participate in the learning process
only with other in-range parked cars. Each road user has
its own onboard sensing configurations (e.g., a camera
or lidar sensor embedded in a vehicle). The produced
data stream is fed into the next processing stage (e.g.,
a machine-learning approach) for object detection and
classification. By merging the list of detected objects with
the spatial information, a road user can build its own
local environment model that will be used in subsequent
decision-making processes. Since we employed CP in
our mechanism, road users are empowered by the ability
to exchange perception data, extending spatial awareness
above their own limited perception. Such perception data
is encapsulated in collective perception messages [26] to
be transferred between road users. Such message exchange
can be performed directly between road users or through
any intermediate node (e.g., an edge server) [27]. For
the sake of simplicity, we assume that all road users
have enough computing resources and similar sensing



deployment to generate the same data type and operate
with identical environment models.

2) Edge Server: In a conventional scenario, an edge
server acts as a simple base station that only forwards data.
However, we assume each edge server has the required
resources for computation and communication to process
data and validate the environment models [28]. Besides
communicating with road users, edge servers can also
exchange data with each other. That is why our mechanism
not only provides a collective perception for road users
who are within the communication range of each other
but also beyond such a spatial limitation.

3) Cloud Server: The principal task of this component
is to orchestrate the whole process of collective perception
in object and situation detection. It is responsible for
initiating the situations that should be detected based on
the road users’ collective perception. In this regard, the
cloud server is working closely with the edge servers to
distribute the situation models among them. In addition, it
benefits from the results of the learning process performed
in the edge servers by combining the learning parameters.

B. Clustering Model
Each cluster can be formed whether by moving road

users (e.g., a combination of moving vehicles) or by a set
of non-moving users (e.g., a group of parked vehicles plus
those waiting behind a traffic light). The size of clusters
can vary from one road user to two or more. Notice that
increasing the number of cluster members is a double-
edged sword, increasing the computing capabilities and
membership dynamicity. Each cluster has a head (CH)
and the rest are cluster members (CMs) that communicate
over a wireless network. To join a cluster, a vehicle must
contact the CH. The credibility of cluster members is the
foundation of cluster services. In a clustering scenario,
a credibility threshold allows new members with higher
qualifications (e.g., compared to a threshold) to join the
cluster. In each cluster, the CH is responsible for letting
CMs leave the cluster or new members join. Also, the
CH is responsible for adjusting the credibility threshold
to make the cluster more stable [29].

V. THE AR-CFL SYSTEM DESIGN
In Figure 2, we illustrate the main components of

AR-CFL. The learning process for object detection is per-
formed on two levels. Firstly, when a user issues a task to
the central server, a global model is generated to be trained
online using vehicles’ collected data. For example, if the
task aims to detect object 1 in the use case in Section III,
the model concerns the dimensions and position of this
object. Then, the global model will be pre-trained by a
random sample of vehicles’ data. Next, the central server
decides how many vehicles are required based on this
specific task’s required computation resources. Finally, the
new global model will be generated by aggregating the
model updates trained in the selected clients. The entire
learning process in this step is called Vertical Cluster-
based Federated Learning (VCFL) because it has a vertical
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Fig. 2: The AR-CFL System Design, which includes the
main components of both levels of federated learning.

processing flow from the central server (i.e., in the cloud
layer) to the participants (i.e., vehicles in the edge layer).
The second level of learning is between the cluster head
and members (e.g., in the edge layer), called Horizontal
Cluster-based Federated Learning (HCFL). Here, the clus-
ter head decides the required number of local iterations
(i.e., training rounds within the cluster) according to the
cluster’s available computing resources.

Although only moving vehicles are involved in cluster
formation in traditional clustering scenarios, a substantial
intact data collection capacity and computing resources
can be explored by incorporating other possibilities. In-
spired by Virtual Edge Computing (V-Edge) [30], virtual
clusters (i.e., V-Cluster) can be formed by connecting
not moving road users (e.g., parked cars). The learning
process in a V-Cluster is similar to a regular cluster,
whereas the communication between V-Cluster members
possesses higher stability due to the lack of mobility in
these road users. This mainly helps the learning system
with less uncertainty in model training, usually caused
by unstable or noisy communication channels. Note that
since the collected data is not changing (e.g., the same
captured images of the road), training the FL model in
multiple local iterations does not make sense; thereby, the
model will be trained in one local iteration and eventually
aggregated by the V-Cluster head.

Each situation requires a particular amount of data and
computing resources to be captured from the environ-
ment. That’s why it is vital to determine the minimum
requirements for detecting each situation. We called such
metric as the situation’s complexity. The exact definition
of such a parameter is indeed application-dependent and
should be determined by domain experts. Moreover, it
makes sense to introduce incentives to select clusters
over single road users. Therefore, the Resource Manager
module endeavors to adjust control variables β (i.e., in-
cluster participant selection strategy) and η (i.e., number



of in-cluster participants) to meet the required Computing
Resources (CR) determined by situation complexity and
update them in each global iteration.

A. VCFL Framework

Due to adding the second level of learning to the con-
ventional FL frameworks, the typical algorithms for client
selection and model collection and aggregation should be
revised. To be more precise, more detailed synchronization
is required between two levels of the FL framework to
achieve the expected benefits. In Algorithm 1, we present
the procedure of client selection and synchronized learning
from the cloud server point of view. In this study, we
chose Federate Averaging (FedAvg) [31], a pioneering
aggregation approach that achieves better accuracy in
previous studies [32], in which a central server (e.g., cloud
server in the proposed scenario) hosts the shared global
model ωg , where g stands for the global iteration number
in the first level of FL.

At the start of VCFL, the list of available clients
with their available computing resources (i.e., C) and the
calculated complexity of the target situation (i.e., CRsi )
are initialized. Besides, the central server pre-trains the
global model (i.e., ω0) by utilizing a small set of data
gathered from all potential participants, e.g., using one
block of data collected by Cluster 1, Cluster 2, and
Single Vehicle 1 in the mentioned use case scenario in
Section III. Moreover, the participant selection strategy
within the cluster is determined here by the central server
and sent to the cluster heads so that all clusters perform the
selection uniformly (i.e., β). Various selection strategies
have been introduced in the proposed approach that will
be elaborated on further. Also, the number of participants
that should be chosen in the specified selection strategy to
be involved in the online training procedure is determined
here using the η value.

At the start of each global iteration, the central server
updates the list of available clients alongside their CR
values. The chosen clients are not necessarily the same
and can change over time based on availability and CR
values. The participant selection method in the first level
of learning is the main difference between the proposed
method and the typical FedAvg. In more detail, while
FedAvg chooses random clients, this approach selects as
many cluster participants as possible. The procedure is
designed to opt for clients with the highest CR values
(i.e., CRcmax ), as clusters usually have higher computing
resources. It will continue selecting clients until their
computing summation (ii.e., Rg) reaches the threshold
required for detecting the situation si. Once the selection is
finished, each chosen participant receives the global model
ωg and replaces its current local model ωc

g .
In the next step, depending on the client type, two

procedures can be deployed to train the model. Suppose
the client is of a type of cluster (normal or virtual). In that
case, the second level of FL is called to train the model
within the cluster by delivering the global model alongside

Algorithm 1 VCFL Procedure
1: Initialization:

C ← {[c1, CRc1 ], ..., [cn, CRcn ]}; ▷ clients
CRsi ← Complexity(si); ▷ situation si
Pre-trained ω0;
β ← In-Cluster Participant Selection Strategy;
η ← Number of In-Cluster Participants;

2: for global iteration g = 0, 1, ... do
3: Update(C);
4: Rg ← 0; ▷ Sum of Computing Resources
5: Eσ ← 0; ▷ Sum of Client’s Weights
6: Cg ← ∅; ▷ Selected Clients
7: while Rg ≤ CRsi do
8: CRcmax ← maxi∈C CRi;
9: Cg ← Cg ∪ cmax;

10: Rg ← Rg + CRcmax

11: C ← C − [cmax, CRcmax ];
12: Distribute ωg to clients in Cg;
13: for client c ∈ Cg do ▷ In Parallel
14: ωc

g ← ωg;
15: if c is a cluster then
16: ωc

g+1 ← HCFL(ωc
g , β, η); ▷ Algorithm 2

17: else
18: Pc ← batches of size B;
19: Ec ← |Pc|;
20: for partition p ∈ Pc do
21: ωc

g ← LocalTraining ( ωc
g , p);

22: ωc
g+1 ← ωc

g;
23: Eσ ←

∑
c∈Cg

Ec;
24: ωg+1 ←

∑
c∈Cg

(Ec/Eσ)× ωc
g+1;

the β strategy with η number of cluster members (Refer
to Algorithm 2). In the end, the cluster head will upload
the aggregated update to the central server. Otherwise, if
the cluster consists of a single vehicle, it partitions the
local data into batches of size B and repeatedly applies
the model to these data blocks for E number of iterations,
e.g., using Stochastic Gradient Decent (SGD). This will
generate the updated local model ωc

g+1, which will be
uploaded to the central server. Finally, the received trained
local models are aggregated in the central server using a
weighted sum into the new global shared model ωg+1.
Notice that the weight for each locally trained model is
calculated based on the number of performed iterations for
each client c (i.e., Ec) over the total iterations in this global
training round (i.e., Eσ). This way, more importance is
given to the cluster updates, which were trained with more
local training iterations.

B. HCFL Framework

As mentioned earlier, the advantages of cluster-based
FL are twofold: (a) cluster members attempt to reach a
higher level of perception capability for a trained model
by performing more iterations than a single vehicle, and
(b) fewer data will be exchanged between clients and
the central server due to short distance communication
within the cluster. The second level of FL is illustrated
in Algorithm 2. Once the cluster head receives the global
model and values for β and η, it calculates the number of
local iterations (i.e., k) required to train the global model,



Algorithm 2 HCFL Procedure
1: Initialization:

Cluster ← {[m1, CRm1 ], ..., [mn, CRmn ]};
CRσ ←

∑
mi∈Cluster CRmi ;

ωCluster
0 ← ωc

g;
k ← Calculate Iterations(CRσ, β, η);

2: for local iteration l = 0, 1, ..., k do
3: if β == Full Aggregation then
4: Cl ← Cluster;
5: else if β == Random then
6: for i← 1 to η do
7: ci ← Random(Cluster);
8: Cl ← ci;
9: Cluster ← Cluster − ci;

10: else if β == MaxLabel then
11: for i← 1 to η do
12: ci ← maxmj∈Cluster LabelCountmj ;
13: Cl ← ci;
14: Cluster ← Cluster − ci;
15: Distribute ωCluster

l to clients in Cl;
16: for c′ ∈ Cl do ▷ In Parallel
17: ωc′

l ← ωCluster
l ;

18: ωc′
l+1 ← LocalTraining (ωc′

l );

19: Ω← Ω ∪ ωc′
l+1; ▷ Set of Collected Updates

20: ωCluster
l+1 ← Aggregate(Ω);

21: return ωCluster
k ;

performed by Iteration Estimator module. Due to more
effortless synchronization in each round of VCFL, the
cluster head tends to minimize the value for k, which helps
optimize the convergence time. Although the cluster head
in HCFL acts as the central server for model aggregation
and distribution, it can also be selected as a participant
to train the model with its local data. This aims to avoid
wasting the cluster head’s resources and help improve the
quality of the updated model since the cluster head will
provide the captured data and computing resources for the
FL approach.

In each local training iteration, the cluster head opts
for the set of participants according to the in-cluster
participant selection strategy (i.e., β). There are three
selection strategies for selecting in-cluster participants β:
Full Aggregation, Random, and MaxLabel. When β =
FullAggregation, all cluster members would participate,
and models are aggregated at the cluster head. On the
other hand, when β = Random, FL clients are randomly
selected in each iteration. Finally, when β = MaxLabels,
cluster members with the most labels (data-rich) are se-
lected (See Figure 3).

In both Random, and MaxLabel strategies, η specifies
how many members will be involved in the local training
within each cluster. The central server will determine η
based on various conditions (e.g., situation’s complexity,
vehicle’s computation capabilities, etc.). E.g., η = 2 means
that two clients from each cluster will be selected to
participate in this local iteration. When having η = 2 and
the β = MaxLabels, two cluster members with the largest
label count in that specific cluster are selected. In the case

(a) Image contains one label. (b) Image contains four labels.

Fig. 3: Example of two image samples. Here, the image
in (b) is more data-rich than the image in (a).

of FullAggregation setup, η equals the total number of
vehicles in the cluster.

In the next step, each selected member trains the model
with fresh local data and returns its update to the cluster
head. The collected updates will be aggregated into a new
model and be used for the next local iteration in this
cluster. Once the training rounds are finished, the cluster
head returns the last aggregated update to the central server
as a result of this round of global training procedure (i.e.,
VCFL).

C. Handling The Limited Storage Challenge

In our research, we introduce a novel aspect by taking
into account the constrained storage capacity of the par-
ticipating vehicles. Data accumulated by a vehicle during
a single iteration is utilized to train the model, provided
the vehicle is selected to contribute to the model training
process. Subsequently, the vehicle purges the utilized
data, making room for the acquisition of fresh data. This
approach contrasts conventional Federated Learning (FL)
literature, as vehicles rely exclusively on their locally
stored data within each iteration, eliminating the prac-
tice of data re-usage across iterations. This mechanism
reflects a heightened degree of realism and effectiveness,
particularly in the context of vehicular Federated Learning
scenarios, where we factor in the inherent limitations of
onboard storage and the dynamic real-time conditions
surrounding the participating vehicles.

Besides, Dynamic Involved Members concept helps the
central server to be flexible in the number of cluster
members that would participate in each round of training.
By combining parameters β and η, clients of the second
level of learning can be adjusted according to the learned
insights from the previous iterations. For example, the size
of the FL participant set can be decreased to save resources
in case the detection performance is not improved by
involving more cluster members.

VI. EVALUATION

In this section, we outline the objectives of our eval-
uation, which aims to assess the impact of clustering
in the context of online learning efficiency and commu-
nication overhead, compared with both centralized and
classical federated learning approaches. The evaluation
encompasses the following aspects:



1) Effect of Varying Traffic Density: We analyze how
varying traffic density affects the overall system
performance.

2) Improvement in Online Learning Efficiency: We
investigate how clustering enhances the efficiency of
online learning in terms of communication overhead
and application-related performance (perception ca-
pability), as compared to a centralized learning
approach.

3) Enhanced Online Federated Learning Efficiency: We
assess how clustering influences the efficiency of
online FL, with a focus on communication overhead
and perception capability, in comparison to the clas-
sical federated learning approach.

4) Impact of Cluster Member Selection Strategy: We
explore the influence of various selection strategies
(i.e., β), the number of selected cluster members
(i.e., η), and the number of clusters on system
performance.

Our evaluation considers several key factors:
Limited Vehicle Storage: Throughout our evaluation, we
consider the constraint of limited storage on the vehicles
and the importance of collecting fresh data over successive
iterations.
Non-IID Data: We conduct the evaluation on non-iid data,
with a clear characterization of data heterogeneity across
system members.
Environmental Considerations: The evaluation is carried
out under various environmental conditions to assess the
robustness and adaptability of the clustering approach.
Communication Assumptions: We assume that com-
munication between vehicles within the same cluster is
easier to establish and less costly than communicating
with edge or cloud servers (long-range communication).
This assumption aligns with our hypothesis that reduced
long-range communication requirements lead to improved
network efficiency.

By systematically addressing these evaluation goals
and considerations, we aim to provide a comprehensive
assessment of the benefits and performance implications
of clustering in the context of online learning in vehicular
networks.

A. Evaluation Scenario and Experimental Setup

We detail the evaluation scenario and experimental setup
for assessing our approach, which focuses on training a
car detection model using image data from participating
vehicles. Our goal is to measure the training efficiency
compared to baselines. To meet the requirement of having
image data from multiple vehicles in similar conditions,
we created a synthetic dataset using the Carla simulator
[33]. The experiments employed the Yolo8n model [34] on
a Linux server with an NVidia RTX3090 Ti GPU.

1) Considered Conditions: Our study involves data col-
lection in various weather and lighting scenarios, including
clear weather day-time (clearDay), rainy weather day-
time (rainyDay), clear weather night-time (clearNight),

(a) clear day-time (b) rainy day-time

(c) clear night-time (d) rainy night-time

Fig. 4: Examples of weather and lighting conditions con-
sidered in our study. The generated datasets are char-
acterized by well-balanced distributions, ensuring that
each condition constitutes approximately 25% of the total
dataset samples.

and rainy weather night-time (rainyNight). Experiments
were conducted using a combination of these conditions,
illustrated in Figure 4.

2) General Setup Variables: In our general setup, we
maintain a constant total of 12 participating vehicles
(Nv) for Federated Learning (FL) model training. We
vary traffic density (α) with values of 30, 50, and 100,
where α = 50 indicates the presence of 50 vehicles.
These vehicles are distinct from the 12 data collector
vehicles participating in FL model training. Additionally,
we explore clustering scenarios, varying the number of
clusters (Ncls). For Ncls = 2, each cluster comprises 6
vehicles, while Ncls = 4 results in clusters of 3 vehicles
each. These variables significantly shape our experimental
design and help assess the impact of clustering on system
performance.

3) Baselines: We benchmark our experimental results
against two baseline methods:

Centralized: This baseline method represents the ideal
Oracle case where all data is stored centrally. To ensure a
fair and controlled comparison, we harmonize the number
of iterations used in the Federated Learning setup with the
data splits of all vehicles for the specific iteration.

ClassicalFL: In this case, no clustering is considered,
and all Federated Learning (FL) clients are situated at the
same level. This approach provides a reference point for
evaluating the impact of clustering on FL performance.

4) Federated Learning Hyper-parameters: In our ex-
perimental setup, we carefully tuned the hyper-parameters
for Federated Learning. We chose the total number of
global iterations as Eg = 50. Upon receiving the model
from the server, each client engaged in El = 100 local
training iterations on the currently available chunk of the
local data. The batch size was set to batch size = 16. We
established the learning rate parameters with lr0 and lrf ,
both configured at their default values of lr0 = lrf =
0.01, and we employed workers = 2. Additionally, we



selected optimizer = auto while maintaining default val-
ues for all other model training and validation parameters
[35].

B. Evaluation Metrics

To assess the performance of the different approaches,
we distinguish between three main categories of metrics,
as follows:

1) Perception Capability: In evaluating the perfor-
mance of object detection models, two key metrics are
often used:

• Mean Average Precision (mAP): mAP is a widely
used metric for object detection because it considers
precision and recall across multiple object classes
[36]. mAP is particularly valuable because it consid-
ers the object detection capability at different confi-
dence score thresholds, making it a robust evaluation
metric. In our evaluation, we considered mAP at
various thresholds, such as mAP50, mAP75, and
mAP50-95.

• F1 Score: We use the F1 score as a supportive metric
to measure the detection performance of the trained
model.

2) Training Time: In reference to the total training time
denoted as trt, we omitted the model exchange time for
the sake of simplification. Moreover, we excluded the
selection time for participating clients. We considered the
actual model training time and the model aggregation time.

3) Volume of the Exchanged Data: We define ed to
measure the size of the exchanged data while neglecting
the generated traffic to select the participating clients in
the clustering setups. In addition, we omitted all the other
CPM loads for simplicity. In the case of Centralized setup,
ed is calculated by measuring the size of the data (images)
that are sent from the Nv vehicles to the server, as follows:

ed =

Nv∑
i=1

ki∑
j=1

datas(i, j)

where in our simulation Nv = 12 sake of simplicity ,
ki is the number of data chunks collected in vehicle i,
and datas(i, j) is the data size j from the vehicle i. In
ClassicalFL, we exchange the models instead of raw data.
The exchanged data volume here is relevant to the number
of selected clients Nn in each global iteration g, Upon
finishing the training on the number of local iterations l,
each selected vehicle sends the model back to the server.
Thus, the final formula to calculate ed in this case is as
follows:

ed =

Eg∑
g=1

2×Nn ×models

where models indicates the model size.
Finally, we consider two-level aggregation to compute

data exchange volumes in clustering setups. First, long-
distance communication between the server and cluster
heads is crucial. By minimizing data exchange in this

costly and slow process, overall efficiency improves. The
bandwidth cost, denoted as edl, is computed as

edl =

Eg∑
g=1

2×Ncls ×models

replacing Nn with Ncls (number of clusters).
Second, short-distance communication between cluster

heads and members is faster and less costly. The band-
width cost, denoted as eds, is calculated as

eds = Ncls ×
Eg∑
g=1

2× η ×models

Depending on client selection methods (β and η), vehicles
are chosen from all clusters. For FullAggregation, η equals
the total cluster members minus one. Actual ed values for
FullAggregation, Random, and MaxLabels are detailed in
Table III.

C. Data Generation

We used the Carla simulator [33] to generate training
and validation data, building upon [37] for concurrent
image and ground truth data generation from multiple
vehicles. As part of ongoing support for researchers, we’re
developing data-generating files with a web-based inter-
face. Simulations used the pre-built Map-Town04 [38], and
data for each situation was uniformly generated. Notably,
we’ve created our dataset and plan to share both the dataset
and source code for data generation in future work.

1) Data Distribution Statistics: Figure 5a visually il-
lustrates sample (image) distribution across clients for
different α values, totaling 22,327 for α = 30, 22,948 for
α = 50, and 23,715 for α = 100. Differences in sample
sizes are negligible relative to the complete dataset.

Figure 5b depicts label (car bounding box) distribution
across the clients’ samples for different α values. Higher
α values result in more total labels distributed among
clients’ samples. The figure illustrates the total number
of labels per client across all iterations. Importantly, it
does not necessarily indicate that a client with a high
total label count has a consistently high label count in
all individual global iterations g. On the other hand, the
data sample distribution remains consistent among clients
within each global iteration g, minimizing data quantity
skew. However, a noticeable label distribution imbalance
across clients underscores our engagement with non-IID
data handling and illustrates data heterogeneity across
clients [39], [40].

D. Results and Discussion

We discuss the experimental results to investigate the
key factors influencing system performance. We analyze
the impact of traffic density fluctuations, explore how
clustering improves online learning efficiency, assess the
influence on online Federated Learning efficiency, and
examine the effects of cluster member selection strategies.



1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

0 1 2 3 4 5 6 7 8 9 10 11

#S
am

pl
es

#ClientID

(a) Sample distribution over clients (vehicles).

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9 10 11

#L
ab

el
s

#ClientID

α=30: 1028
α=50: 1516
α=100: 3595

Average #labels per client

(b) Label distribution over clients (vehicles).

Fig. 5: Data distribution statistics of the clients Nv = 12.
We generated three datasets with varying traffic densities
α = 30, 50, 100.

1) Analyzing Traffic Density Impact on Performance:
We explored the influence of traffic density on system
performance, evaluating under α = 30, 50, 100. Figure
6 illustrates some perception capability metrics in the
Centralized approach, revealing an evident trend: as traffic
density rises, there’s more consistent model performance
and an overall enhancement in the perception capability.
Increased traffic density results in capturing more objects
within the generated images, thereby enhancing the model
training performance.

Notably, heightened traffic density correlates with in-
creased perception capability without influencing training
time or data exchange volume. These factors depend solely
on sample size, not characteristics within the samples.
These insights extend beyond the Centralized approach,
as demonstrated in Tables I, II, and III.

2) Influence of Clustering vs. Centralized Approach on
Online Learning Efficiency: In examining the impact of
clustering on online learning efficiency versus central-
ized learning, we emphasize communication overhead and
application-related performance. Figures 7 and 8 reveal
that the Centralized approach consistently outperforms
clustering methodologies in perception capability. Despite
this, the gap remains constant across different α values.

The true advantage of clustering emerges in reduced
training time (trt). Clustering approaches demonstrate
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Fig. 6: The perception capability of the Centralized ap-
proach is evaluated across different traffic densities with
values α = 30, 50, 100. #Epoch refers to the number
of global iterations. A noticeable enhancement in perfor-
mance is evident with the increase in traffic density.
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Fig. 7: Comparing the perception capability between the
Centralized approach and selected Clustering approaches
under a traffic density of α = 30.

an impressive 52% decrease in training time compared
to Centralized (trt = 207minutes for Centralized vs.
trt = 101minutes for all Clustering setups). More-
over, considering maximum exchanged data volume (e.g.,
MaxLabels with η = 5), clustering setups exhibit a notable
30% reduction compared to Centralized. This reduced data
exchange is a pivotal factor contributing to the overall ef-
ficiency of the clustering-based online learning paradigm.
Refer to Tables I and III for comprehensive quantitative
results supporting our findings.

3) Influence of Clustering vs. ClassicalFL Approach on
Online Learning Efficiency: We analyze how clustering
impacts online learning efficiency, emphasizing communi-
cation overhead and application-related performance com-
pared to the classical federated learning approach.

Figures 9 and 10 offer nuanced insights into online
learning efficiency. FullAggregation and MaxLabels clus-
tering strategies outperform traditional ClassicalFL in
perception capability. FullAggregation involves all clients
in each iteration, contrasting with ClassicalFL, which ran-
domly selects a subset (Nn) of clients per iteration. How-
ever, FullAggregation introduces increased short-range
communication (eds) compared to ClassicalFL.

MaxLabels surpasses ClassicalFL by selecting clients
within each cluster with the maximum labels per iteration,
enhancing the perception capability and convergence. Yet,
clustering introduces additional communication overhead,
evident in eds values exclusive to clustering setups (Table



TABLE I: Performance Metrics for the Centralized
approach across three distinct traffic densities α =
30, 50, 100. Data gathered from all clients is used. The
training time is trt = 207Minutes.

α
Perception Capability Metrics

ed (MB)F1 mAP50 mAP75 mAP50-95
α = 30 0.673 0.677 0.537 0.452 10488
α = 50 0.716 0.715 0.545 0.475 10786
α = 100 0.866 0.880 0.766 0.672 11146

TABLE II: Performance Metrics for ClassicalFL method
with different Nn values. Nn = 12 represents FullAggre-
gation and provide similar perception capability in both
ClassicalFL and Clustering approaches. The training time
is trt = 101Minutes, excluding the time spent on model
exchange and selecting participating clients.

α Nn
Perception Capability Metrics

ed (MB)F1 mAP50 mAP75 mAP50-95

α = 30
2 0.512 0.466 0.228 0.247 1240
4 0.540 0.529 0.317 0.299 2480
12 0.589 0.579 0.359 0.343 7440

α = 50
2 0.512 0.484 0.206 0.239 1240
4 0.570 0.530 0.259 0.279 2480
12 0.629 0.626 0.381 0.356 7440

α = 100
2 0.673 0.663 0.444 0.406 1240
4 0.723 0.724 0.523 0.465 2480
12 0.751 0.755 0.552 0.491 7440

III). The Random clustering setup with η = 1 shows com-
parable performance to ClassicalFL, randomly selecting
clients in each iteration. With increased η (e.g., η = 3),
Random clustering outperforms ClassicalFL in perception
capability due to more participating clients. Considering
only model training and aggregation time and assuming si-
multaneous training in clusters, both Clustering setups and
ClassicalFL have a training time of trt = 101minutes.
For detailed results, refer to Tables III and II.

4) Impact of In-cluster Member Selection Strategy &
Varying Cluster Numbers on Overall Performance: We
examine the influence of changing the total number of
clusters (Ncls), diverse selection strategy (β), and the
quantity of chosen cluster members (η) on overall system
performance, using β = FullAggregation as a baseline
for comparison.

Varying Cluster Numbers (Ncls): We conducted a
comprehensive analysis to assess the influence of different
numbers of clusters, denoted as Ncls, on various aspects of
our proposed system. Our findings, as presented in Table
III, reveal compelling insights into the system’s behavior.

Firstly, we observe that the training time remains con-
sistent trt = 101Minutes irrespective of changes in the
number of clusters Ncls. Analyzing the communication
overhead, we observe an increase in the long-range com-
munication overhead, denoted as edl, corresponding to
the augmented values of Ncls. This can be attributed to
the increased communication overhead between the head
nodes of clusters and the server. Similarly, the short-range
communication overhead eds exhibits an upward trend
with an increased number of clusters. This trend indicates
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Fig. 8: Comparing the perception capability between the
Centralized approach and selected Clustering approaches
under a traffic density of α = 100.

0 10 20 30 40 50
#Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ClassicalFL (Nn=2)
FullAggregation
Ncls=2, =MaxLabels( =1)
Ncls=2, =Random( =1)

(a) F1

0 10 20 30 40 50
#Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ClassicalFL (Nn=2)
FullAggregation
Ncls=2, =MaxLabels( =1)
Ncls=2, =Random( =1)

(b) mAP50
Fig. 9: Comparing the perception capability between the
ClassicalFL approach and selected Clustering approaches
under a traffic density of α = 100 with one selected client
at each cluster (η = 1).

a broader engagement of cluster nodes in online learning.

Turning our attention to perception capability, as
depicted in Figure 11, we found that when β =
FullAggregation, the perception capability remains con-
stant across different Ncls values. This observation aligns
with the intuitive expectation that all cluster nodes, includ-
ing head nodes, participate in online learning regardless of
the cluster count. It is noteworthy that in the context of
the ClassicalFL approach, particularly when Nn = 12,
it yields perception capability results identical to those
in the Clustering setup with β = FullAggregation, as
detailed in Table II. Contrastingly, when β takes values
of either β = Random or β = MaxLabels, perception
capability becomes intricately linked to the parameter η.
For instance, with η = 2, a Ncls = 2 configuration
implies the participation of four nodes in online learning.
In contrast, for Ncls = 4, eight nodes engage in the
learning process. This relationship results in an enhanced
perception capability with an increased number of clusters.

Different Selection Strategy (β) with Varying (η): In
our study, the constant number of data collection vehicles
(Nv = 12) limited our ability to increase η values beyond
η = 2 for Ncls = 4. However, for Ncls = 2, we conducted
experiments with varying η = 1, .., 5.

Figures 12, 13 illustrate that, when β = Random, in-
creasing η slightly enhances perception capability but con-
sistently falls short of the perception capability achieved



TABLE III: Performance comparison of various Clustering approaches across three traffic densities (α = 30, 50, 100)
and different cluster counts (Ncls = 2, 4). The training time is trt = 101Minutes for all approaches, excluding the
time spent on model exchange and the selection process for participating clients.

α Ncls β
Perception Capability Metrics ed (MB)

F1 mAP50 mAP75 mAP50-95 edl eds

α = 30

2 FullAggregation 0.589 0.579 0.359 0.343 1240 6200
Random (η = 1) 0.506 0.469 0.242 0.248 1240 1240
Random (η = 2) 0.561 0.545 0.332 0.314 1240 2480
Random (η = 3) 0.566 0.56 0.339 0.326 1240 3720
Random (η = 4) 0.605 0.58 0.348 0.336 1240 4960
Random (η = 5) 0.583 0.579 0.353 0.343 1240 6200

MaxLabels (η = 1) 0.527 0.501 0.308 0.289 1240 1240
MaxLabels (η = 2) 0.596 0.574 0.362 0.34 1240 2480
MaxLabels (η = 3) 0.583 0.572 0.359 0.34 1240 3720
MaxLabels (η = 4) 0.599 0.587 0.365 0.351 1240 4960
MaxLabels (η = 5) 0.593 0.585 0.358 0.349 1240 6200

4 FullAggregation 0.589 0.579 0.359 0.343 2480 4960
Random (η = 1) 0.558 0.549 0.345 0.327 2480 2480
Random (η = 2) 0.588 0.578 0.348 0.333 2480 4960

MaxLabels (η = 1) 0.574 0.567 0.331 0.323 2480 2480
MaxLabels (η = 2) 0.598 0.587 0.368 0.348 2480 4960

α = 50

2 FullAggregation 0.629 0.626 0.381 0.356 1240 6200
Random (η = 1) 0.529 0.488 0.212 0.249 1240 1240
Random (η = 2) 0.578 0.566 0.319 0.313 1240 2480
Random (η = 3) 0.588 0.565 0.315 0.317 1240 3720
Random (η = 4) 0.625 0.61 0.359 0.342 1240 4960
Random (η = 5) 0.616 0.609 0.378 0.354 1240 6200

MaxLabels (η = 1) 0.586 0.560 0.365 0.340 1240 1240
MaxLabels (η = 2) 0.619 0.605 0.412 0.366 1240 2480
MaxLabels (η = 3) 0.628 0.627 0.426 0.374 1240 3720
MaxLabels (η = 4) 0.621 0.619 0.406 0.365 1240 4960
MaxLabels (η = 5) 0.612 0.613 0.366 0.343 1240 6200

4 FullAggregation 0.589 0.579 0.359 0.343 2480 4960
Random (η = 1) 0.552 0.530 0.309 0.291 2480 2480
Random (η = 2) 0.602 0.604 0.339 0.333 2480 4960

MaxLabels (η = 1) 0.594 0.569 0.378 0.346 2480 2480
MaxLabels (η = 2) 0.619 0.617 0.361 0.344 2480 4960

α = 100

2 FullAggregation 0.751 0.755 0.552 0.491 1240 6200
Random (η = 1) 0.716 0.706 0.483 0.439 1240 1240
Random (η = 2) 0.723 0.718 0.540 0.456 1240 2480
Random (η = 3) 0.731 0.737 0.528 0.474 1240 3720
Random (η = 4) 0.734 0.742 0.536 0.481 1240 4960
Random (η = 5) 0.741 0.746 0.54 0.479 1240 6200

MaxLabels (η = 1) 0.716 0.708 0.498 0.450 1240 1240
MaxLabels (η = 2) 0.73 0.74 0.551 0.485 1240 2480
MaxLabels (η = 3) 0.743 0.741 0.557 0.49 1240 3720
MaxLabels (η = 4) 0.745 0.745 0.56 0.493 1240 4960
MaxLabels (η = 5) 0.765 0.759 0.555 0.497 1240 6200

4 FullAggregation 0.751 0.755 0.552 0.491 2480 4960
Random (η = 1) 0.725 0.725 0.522 0.458 2480 2480
Random (η = 2) 0.745 0.754 0.537 0.488 2480 4960

MaxLabels (η = 1) 0.727 0.743 0.534 0.479 2480 2480
MaxLabels (η = 2) 0.744 0.75 0.559 0.491 2480 4960

with β = FullAggregation. Conversely, with β =
MaxLabels, increasing η notably improves perception
performance. Furthermore, we observed that with 16-25%
fewer participating nodes, β = MaxLabels outperforms
β = FullAggregation. In addition, β = MaxLabels
requires approximately 17-33% less long-range communi-
cation for the same outcome. Table III reveals an interest-
ing trend: while increasing η generally boosts perception
capability, a threshold exists beyond which the positive
effect diminishes. For instance, in the case of α = 30,
Ncls = 2, perception capability increases with growing
η until η = 4, which starts to decline. This decline
is attributed to β = MaxLabels, where nodes with
fewer labels are excluded from online learning, preventing

potential negative effects. However, when η surpasses a
certain threshold, nodes with minimal labels are included,
leading to decreased perception capability. This threshold’s
variability, contingent on traffic density, is evident in
the transition from η = 4 to η = 5 under α = 30,
Ncls = 2, where perception capability drops, compared
to the continuous increase with α = 100, Ncls = 2.

E. Limitations of the Study

We exchanged the entire model due to the detection
model’s modest size (6.2 MB) during our experiments.
However, practical perception models may be larger, ne-
cessitating model compression for enhanced efficiency.
A limitation involves the need for image data captured
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Fig. 10: Comparing the perception capability between the
ClassicalFL approach and selected Clustering approaches
under a traffic density of α = 100 with three selected
client at each cluster (η = 3).
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Fig. 11: The perception capability of various Clustering
approaches under a traffic density of α = 100, with two
selected clients in each cluster (η = 2), and varying cluster
counts Ncls.

by multiple vehicles in close proximity under similar
environmental conditions. We addressed this by generating
synthetic datasets using the Carla simulator [33], but real-
world data would offer a more accurate representation. No-
tably, we did not incorporate security or privacy-preserving
mechanisms in this paper. For a more comprehensive ap-
proach, integrating the encryption and privacy-preserving
techniques (e.g., differential privacy) is advisable. These
aspects are recognized as important directions for future
research and refinement of the proposed framework.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented AR-CFL, an innovative
Adaptive Resource-aware Clustered Federated Learning
framework designed specifically for a thorough exami-
nation of the factors impacting continuous online feder-
ated learning and communication networks in vehicular
environments. Utilizing our framework, we conducted a
comprehensive investigation into the scenario of car detec-
tion models online training on non-IID data, considering
various conditions. To achieve this objective, we created
three synthetic image datasets representing different traffic
densities using the Karla simulator. In contrast to existing
literature, we addressed the constraint of limited storage
on vehicles by utilizing freshly captured data at each
global iteration. Our analysis revealed that increasing
the traffic density enhances the perception capability of
the train model. We compared the Clustering approaches
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Fig. 12: Comparing the perception capability between the
FullAggregation and Random clustering approaches under
a traffic density of α = 100, with a varying number of
selected clients at each cluster (η = 1, .., 5), and two
clusters (Ncls = 2).
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Fig. 13: Comparing the perception capability between
the FullAggregation and MaxLabels clustering approaches
under a traffic density of α = 100, with a varying number
of selected clients at each cluster (η = 1, .., 5), and two
clusters (Ncls = 2).

against both Centralized and traditional ClassicalFL learn-
ing approaches under different configurations. Results
demonstrate a noteworthy advantage in leveraging FL,
showcasing a remarkable 52% reduction in training time
compared to the traditional centralized training approach.
Furthermore, we explored the effects of varying cluster
counts and different participant selection strategies within
the Clustering setup. We found out that elevating the
cluster count results in heightened long-range communica-
tion. Notably, certain participant selection strategies, such
as MaxLabels, demonstrate high perception performance
compared to FullAggregation approach, with up to a 25%
reduction in participating nodes, and 33% less long-range
communication.

As a direction for future research, implementing model
compression techniques could enhance the efficiency. Ad-
ditionally, evaluating our framework with real-world data
would be preferred to better generalization. Finally, the
integration of additional encryption and privacy-preserving
mechanisms such as differential privacy would offer sig-
nificant benefits.
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