
Contrasting Global and Local Representations for Human
Activity Recognition using Graph Neural Networks

Andrés Tello
Bernoulli Institute, University of Groningen

Groningen, The Netherlands
andres.tello@rug.nl

Victoria Degeler
Informatics Institute, University of Amsterdam

Amsterdam, The Netherlands
v.o.degeler@uva.nl

Abstract
Human Activity Recognition has achieved notable improvements
with the emergence of Deep Learning models for automated feature
extraction. Those models allow to extract complex translational-
invariant features and to exploit the temporal dependencies from
sensors’ time series data. This work posits additional dependen-
cies between sensors beyond the time dimension, such as physical
proximity, which are equally important for the characterization
of human activities. We leverage such spatial dependencies by
modeling them as a graph. Using Graph Neural Networks (GNNs),
we learn global and local representations of the intra- and inter-
sensor dependencies. We empirically show that by maximizing the
mutual information between the local and global representations,
the performance of the recognition models can be significantly
improved. Our results show a clear improvement over previous
works based on CNNs, LSTMs, Attention-based and other more
complex GNNs-based architectures. Our source code is available at
https://anonymous.4open.science/r/GNNs4HAR-31C2

CCS Concepts
• Computing methodologies → Semi-supervised learning
settings; Learning latent representations; • Human-centered
computing → Ubiquitous and mobile computing systems and tools.
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1 Introduction
Human Activity Recognition (HAR) is a field that has attracted
the attention of Academia and Industry for several years. In the
early years of HAR, the problem of recognizing human activi-
ties was addressed using classical machine learning approaches,
e.g., Decision Trees, Support Vector Machines, Naïve Bayes and
k-Nearest Neighbors [1, 2, 28]. Later on, Deep Learning approaches
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based on Convolutional Neural Networks (CNNs) or Recurrent
Neural Networks (RNNs) have been extensively applied in the field
of HAR, showing significant results [9, 14, 26, 32, 39]. Those ap-
proaches mainly exploit the relationships across the data in the time
dimension. On the one hand, CNNs are used for feature extraction
to find patterns which are invariant to translations across different
segments [14]. On the other hand, LSTMs, a type of RNN, only
exploit temporal dependencies [26].

The current study, in addition to the temporal patterns, also
leverages the spatial dependencies in the data and introduces them
as relational inductive biases represented as a graph structure. The
assumption is that signals collected from smartphones and wear-
ables, while people perform different activities, have additional
dependencies that span beyond the temporal dimension. These spa-
tial dependencies between intra- and inter-sensor’s data channels
can be represented as a graph. GNNs have been successfully applied
to learn complex relationships in graph-structured data [4, 11–13].
Then, such relationships can be learned by a GNN-based model and
subsequently used to characterize human activities.

Although previous work introduced the idea of applying GNN-
based models in the HAR domain [18, 33, 37], these do not reflect
the real performance of the models due to a methodological issue
within the HAR pipeline that causes biased results. Such biases
are introduced by the evaluation strategy that follows a sliding-
windows data segmentation approach [15, 30]. Therefore, the real
value that GNN-based models can bring to the field was not clearly
established from these works.

In this paper, we formulate HAR as a multi-class graph classifica-
tion problem. We apply two different graph construction methods
from raw sensor signals, which leverage global and local depen-
dencies in the time series data. While global dependencies are cap-
tured by correlating the sensor’s channels from the entire sequence,
local dependencies capture the correlations within smaller time
frames. Thus, global and local graphs represent different views of
the same human activities. Then, a contrastive learning approach,
to maximize mutual information between the two views, shows a
significant performance gain for HAR models.

We evaluate our proposed approach on four benchmark datasets,
UCIHAR [1], MHEALTH [2], PAMAP2 [28], and REALDISP [3].
These datasets comprise accelerometer, gyroscope and magnetome-
ter data from Inertial Measurement Unit (IMU) sensors. Our GNNs-
based models produce accuracies over 90% on UCIHAR, MHEALTH
and REALDISP datasets, and ≈ 87% accuracy on PAMAP2. These re-
sults surpass previous approaches based onCNNs, LSTMs, Attention-
based and other more complex GNNs-based architectures. It shows
that GNNs has potential in the HAR domain, allowing to discover
different relationships in the data beyond the temporal dimension.
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The main contributions of our work are: (i) A new set of state-of-
the-art GNNs-based models for HAR with significant reduced com-
plexity compared to existing approaches, (ii) Global and local graph
representations of the inter- and intra-sensor dependencies, and
(iii) A contrastive learning approach that leverages the global/local
dependencies to enhance the performance of HAR models, showing
a clear improvement over other state of the art methods.

The remainder of this document is as follows. Section 2 shows
the related work to this field and discusses the main differences
of our work with the existing GNNs-based approaches for HAR.
Section 3 describes and formalizes our approach. Section 4 describes
the experiments performed on Human Activity Recognition using
GNNs. Section 5 presents and discusses the results. Finally, Section
6 presents the conclusions.

2 Related Work
Most of the existing work on HAR using GNNs is based on skeleton
graphs extracted from video sequences [8, 21, 36]. During the last
years, the community started to explore the capabilities of GNNs
for HAR using IMU sensors from smartphones or other types of
wearable devices [18, 24, 33, 37].

Huang et al. [18] propose a shallow CNN that performs cross-
channel communication for HAR. The cross-channel communica-
tion is achieved by message passing within a GNN. They propose
a 3-layer CNN followed by a fully connected layer for final clas-
sification. However, they encode the output of each CNN layer
via graph attention network over a fully connected graph where
each channel of the CNN is considered a node. Then, the encoded
signals are send back to the next CNN layer. They evaluated their
proposed approach by comparing a 3-layers CNN, 6-layers CNN
and a 3-layers CNN + GAT. The results show that cross-channel
communication via GNN message passing outperforms a deeper
CNN architecture. Since our architecture is based only on a 3-layer
GNN, the number of parameters of our model is reduced by half
with respect to this work.

Mohamed et al. [24] propose HAR-GCNN, a deep graph CNN
to classify human activities. Their approach is based on the as-
sumption that people perform certain activities in a chronological
order. Hence, they exploit the correlation between chronologically
adjacent activities to predict unlabeled or future activities. They
create a fully connected graph by taking a number of consecutive
samples in a time window t, where each sample represents a node
in the graph. Then, they randomly mask a number of activity labels
and add noise to the features of some randomly selected nodes.
The model is trained to predict the missing labels. Taking n con-
secutive activities and randomly masking some of the labels is not
realistic because the nodes representing future activities may be
used to predict the past ones. In a realistic implementation, only
the most recently executed activities can be used to predict the
next one (or at most n in the near future). Hence, masking can not
be made at random. In addition, the authors assume that activities
are usually executed by people in a certain particular order. Such
assumption can lead to models that learn the sequence in which
activities were performed rather than real patterns that characterize
each activity [7]. This effect is more pronounced in datasets with
strict data collection protocols [7], but can be less noticeable in

a more natural setting with a loose order of activities. From the
results reported in this work, it is clear that the model is learning
the order on which the activities were performed. The results on
PAMAP2 dataset, which has a strict data collection protocol, are
almost perfect. On the contrary, the performance drops ≈10% points
on Extra-Sensory dataset, in which subjects were not instructed
on how to perform the activities. Our work does not make any
assumption on the order on how the activities were performed.
Thus, the graph construction does not depend on the sequence of
data samples but on the correlations between sensors’ data signals.

Yan et al. [37] propose a model based on 4 blocks composed of
4 Chebyshev [10] layers, followed by a normalization layer and a
Leaky ReLU activation function. At the end, two fully connected
layers are used as a classifier. Their model architecture is composed
of 18 layers with 5.29M trainable parameters in total. They also used
the MHEALTH and PAMAP2 datasets. The raw input data signals
are transformed into a graph representation based on Pearson cor-
relation coefficient matrix. A correlation above 0.2, as a threshold,
implies an edge between those two signals. The authors reported
accuracy above 98% for PAMAP2 and MHEALTH datasets. The
work of Wang et al. [33] is build upon [37]. It also computes the
adjacency matrix for the graph representations based on the Pear-
son correlation coefficient. What makes this work interesting is the
combination of message passing GNNs with multi-head attention
to learn channel-wise correlations.

Unfortunately, some results presented in the aforementioned
works, [33, 37], are misleading due to accuracy overestimation
caused by a biased evaluation protocol. In those studies, the data seg-
mentation is performed using the well established sliding-windows
approach. The problem arises when the training/validation/test sets
are determined at random. The sliding-windows approach intro-
duces a high correlation between two consecutive windows and
therefore the way in which training and test samples are chosen
affects the performance of the models, as discussed in detail in
[15, 30]. We show that, with a proper evaluation protocol, the per-
formance reported in [37] drops 14 percentage points on average.
This highlights the need for a thorough exploration of GNN-based
models for HAR.

The main difference of our work with these approaches is that
we add a local graph representation computed on per-window
Pearson correlation coefficients. Then we contrast the global and
local representations to maximize the mutual information between
them. Since our model is shallow, the complexity is reduced to
0.43M parameters, achieving a significantly higher performance.

3 Graph Classification for Human Activity
Recognition

In this section we describe and conceptualize our approach. First
we describe how we model human activities as graphs. Then we
describe how we formulate HAR as a graph classification problem.

3.1 Human Activities as Graphs
Given the raw data signals from the IMU sensors in the form of a
matrix 𝑋 ∈ R𝑛×𝑚 , where 𝑛 is the number of observations and𝑚
is the number of channels in the raw signals, an activity graph is
represented as G = (V, E, l). The set of nodes or vertices is given
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by V , where each vertex represents a channel of the signal. The
edge set is given by E = {(𝑖, 𝑗) ∈ V ×V : 𝑤𝑖 𝑗 ≠ 0 }, where 𝑤𝑖 𝑗 is
the weight of the edge connecting node 𝑖 to node 𝑗 , i.e., the strength
of the connection between two signal channels. The label, l ∈ L,
denotes the activity associated with a graph G, where L is the set
of all activity labels in the dataset.

The nodes V , given by the different channels of the signals, are
known beforehand. The edge set E, and its associated weights𝑤𝑖 𝑗 ,
have to be estimated from data observations. Initially we assume
a fully connected graph, and the number of edges |E | =𝑚(𝑚 − 1).
Then, the edge set is refined by choosing a subset of edges from E
based on data statistics e.g., covariance/kernel matrices.

In our work, we used the correlation matrix to build the graph
topology and estimate the edge weights from the raw data signals.
Similar to [37] and [33], we rely on the Pearson’s correlation coeffi-
cients matrix. This method has been widely used to discover the
topology and estimate functional connectivity between the regions
of the brain, and it is recognized to be one of the most used meth-
ods in that field [17, 27, 34]. The Pearson’s correlation coefficient
is defined as the covariance of two random variables, in our case
𝑣𝑖 , 𝑣 𝑗 ∈ V , normalized by the product of their standard deviations.

𝜌 (𝑣𝑖 ,𝑣𝑗 ) =
cov(𝑣𝑖 , 𝑣 𝑗 )
𝜎𝑣𝑖 𝜎𝑣 𝑗

(1)

Using equation (1) we obtain a correlation matrix𝑋𝑐𝑜𝑟𝑟 ∈ R𝑚×𝑚 ,
where a zero value implies no (linear) correlation between two ran-
dom variables, i.e., there is an edge connecting two nodes if and only
if the correlation coefficient is different than zero. The correlation
coefficients in 𝑋𝑐𝑜𝑟𝑟 gives us the strength of the correlation; hence,
they can be used as the weights of the edges connecting a pair of
nodes in our activity graphs. However, instead of using the com-
plete correlation matrix for computing the edges and their weights,
we used a sparse version by setting a threshold 𝜏 . The threshold
allows to filter out noisy connections in our activity graphs. Ac-
cording to [27], when using Pearson’s correlation to define the
graph connectivity, the threshold can act as a L1-regularization
term included in others approaches, e.g., Graphical Lasso. Taking
into account that the correlation coefficients can be negative, the
edge weight can be defined as follows:

𝑤𝑖 𝑗 =

{
|𝜌 (𝑣𝑖 ,𝑣𝑗 ) |, if |𝜌 (𝑣𝑖 ,𝑣𝑗 ) | > 𝜏 .

0, otherwise.
(2)

The correlation coefficient values are considered weak for values
|𝜌 (𝑣𝑖 ,𝑣𝑗 ) | < 0.2, moderate for values of 0.2 ≤ |𝜌 (𝑣𝑖 ,𝑣𝑗 ) | ≤ 0.3 and
strong for values of |𝜌 (𝑣𝑖 ,𝑣𝑗 ) | > 0.3 [16, 29]. Therefore, the threshold
𝜏 was set to 0.2 to filter out weak connections and include moderate
and strong categories in terms of correlation strength.

Applying the approach described above, we define two differ-
ent types of activity graphs: G𝑔𝑙𝑜𝑏𝑎𝑙 and G𝑙𝑜𝑐𝑎𝑙 . The first type of
graphs, G𝑔𝑙𝑜𝑏𝑎𝑙 , are based on a single correlation matrix calculated
from the entire training set. Then this matrix is used to define the
edges and weights for all activity graphs. The difference between
the activity graphs constructed using this approach is in the feature
values of the nodes. The features for each node are given by the
sensor readings within a temporal window 𝑡 . For the second type of
graphs, G𝑙𝑜𝑐𝑎𝑙 , a different graph is created for every time window

𝑡 . Hence, a correlation matrix, 𝑋 (𝑡 )
𝑐𝑜𝑟𝑟 , is calculated from the signal

of the channels for each window and such matrix is used to define
the edges and the weights of each graph. The motivation to create
a different graph for each time window is that every activity is
expected to have an underlying topology that describes the struc-
tural relationships between the signals. Therefore, since every time
window corresponds to a specific activity, the model can learn the
patterns hidden per activity class. This procedure is repeated for
all the windows in the training, validation and test sets.

3.2 Classification of Human Activity Graphs
We formulated HAR as a supervised multi-class graph classification
problem. In the activity graph classification setting, given a set of
graphs {G1,G2, ...,G𝑁 } ⊆ G with its corresponding activity labels
{𝑙1, 𝑙2, ..., 𝑙𝑁 } ⊆ L, a GNN-based classifier should learn a vector
representation of a graph ℎG that allows to predict its associated
label, 𝑙G = 𝑔(ℎG) [35].

In general terms, GNNs learn vector representations of a node,
ℎ𝑣𝑖 , by iteratively aggregating the vector representations of its
neighbors, ℎ𝑣𝑗 : 𝑣 𝑗 ∈ N (𝑣𝑖 ), and then combining the aggregated
vectors with its own representation at iteration 𝑡 − 1. Using the
notation presented in [35], this iterative learning process can be
denoted as:

𝑎
(𝑡 )
𝑣𝑖 = AGGR(𝑡 ) ({ℎ (𝑡−1)𝑣𝑗 : 𝑣 𝑗 ∈ N (𝑣𝑖 )}) (3)

ℎ
(𝑡 )
𝑣𝑖 = COMBINE(𝑡 ) (ℎ (𝑡−1)𝑣𝑖 , 𝑎

(𝑡 )
𝑣𝑖 ) (4)

Both AGGR (equation 3) and COMBINE (equation 4), may be
arbitrary differentiable, permutation-invariant functions [25]. In a
node classification problem, the final representation of a node (ℎ (𝑇 )

𝑣𝑖 )
would suffice. For graph classification, we need a global function to
aggregate the final representation of all nodes 𝑣𝑖 ∈ V . Once again,
any permutation invariant function can be used, e.g., sum or max
or other more advanced readout implementations like DiffPool [38]
or SortPool [40]. Then, the vector representation of an entire graph
can be defined as:

ℎG = READOUT({ℎ (𝑇 )
𝑣𝑖 : 𝑣𝑖 ∈ G}) (5)

The final vector representation of our activity graphs, ℎG can
be passed to a final classifier, e.g., a Multi Layer Perceptron (MLP),
followed by a softmax function to predict the label associated to a
graph, 𝑙G = 𝑔(ℎG).

3.3 Contrasting global and local activity graphs
representations

We propose a contrastive learning algorithm based on the two differ-
ent views of our activity graphs, G𝑔𝑙𝑜𝑏𝑎𝑙 and G𝑙𝑜𝑐𝑎𝑙 , described in
section 3.1. The idea is to maximize themutual information between
pairwise representations of the same activity. Thus, two separate
GNN-based encoders compute the global and local vector represen-
tations (embeddings) of an activity graph by means of equations 3,
4, and 5. Then, the tuple (ℎG𝑔𝑙𝑜𝑏𝑎𝑙

, ℎG+
𝑙𝑜𝑐𝑎𝑙

), represent the positive
pairs. Using the same local encoder to compute the embeddings of
a corrupted version of G𝑙𝑜𝑐𝑎𝑙 , the negative pairs for contrasting
are (ℎG𝑔𝑙𝑜𝑏𝑎𝑙

, ℎG−
𝑙𝑜𝑐𝑎𝑙

). The corruption of G𝑙𝑜𝑐𝑎𝑙 is performed by a
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random permutation of the nodes, a random permutation of the
edges, or both. Finally, both, the global and local embeddings of
the activity graphs are concatenated and passed through two fully
connected layers for classification. Figure 1 shows and overview of
the proposed contrastive learning approach for HAR.

4 Experiments
First, using the G𝑔𝑙𝑜𝑏𝑎𝑙 and G𝑙𝑜𝑐𝑎𝑙 graph representations inde-
pendently, we evaluated the ability of GNNs to classify the human
activities. Then, combining both representations, we followed a
contrastive learning approach to train a model that maximizes the
mutual information between activity graphs that represent the
same activities, or minimizes it otherwise.

4.1 Datasets
The datasets used in this study are UCIHAR [1], MHEALTH [2],
PAMAP2 [28], and REALDISP [3]. They comprise accelerometer,
gyroscope and magnetometer data collected from smartphones and
wearable devices while people perform different activities.

UCIHAR. The data were collected from a smartphone placed
on the waist of 30 volunteers performing the activities: Walking,
Walking Up, Walking Down, Sitting, Standing and Laying. These
data were collected at a constant sampling rate of 50Hz. Subjects 2,
6, 12, 19, and 26 were used for validation. Data from subjects 5, 8,
10, 14, 20, and 21 were used for testing and rest for training.

MHEALTH. This dataset contains data of 10 volunteers perform-
ing the activities: Standing, Sitting, Lying down, Walking, Climbing
stairs, Waist bends forward, Arms up, Knees Bending, Cycling, Jog-
ging, Running and Jumping. The data was collected with wearables
placed at subjects’ chest, right wrist and left ankle. The sampling
rate was 50Hz. Two 2-lead ECG measurements on the chest were
not used in the experiments. Data from subjects 6 and 10 were used
for validation, subjects 2 and 9 for testing and the rest for training.

PAMAP2. The data were collected from 9 subjects using IMUs
attached to the wrist, chest and ankle while performing everyday,
household and sport activities. The sampling rate was 100Hz. This
dataset includes eighteen different activities. However, in our ex-
periments we only used the main twelve activities: Lying down,
Sitting, Standing, Walking, Running, Cycling, Nordic Walk, Walking
Upstairs, Walking Downstairs, Vacuum Cleaning, Ironing and Rope

Jumping. Data from subjects 101 and 107 were used for validation,
subjects 103 and 105 for testing and the remaining for training.

REALDISP. This dataset contains data collected from 17 subjects
while performing 33 physical activities. In this study, we only used
the activitiesWalking, Jogging, Running, Jumping, Jump rope, Waist
bends forward, Arms up, Knees to breast, Knees Bending, and Cycling
to be consistent with the type of activities in the previous datasets.
The recordings were sampled at 50 Hz. Data from subjects 4, 6, 10,
and 11 were used for validation; subjects 1, 7, 8, 9, 12, and 14 for
testing and the remaining for training.

4.2 Data Preprocessing
We followed the conventional approach of splitting the data into
training, validation and test sets as described in the previous section.
The splits were performed following a stratified by subject approach,
where subjects for each subset were chosen at random. Using this
scheme the data is split into folds with non-overlapping subjects,
where percentage of samples for each class is preserved. Splitting
the data by subject ensures the independence between training and
validation data [15, 30], which was not observed in previous works,
such as ResGCNN [37]. Then, z-score normalization was applied to
our training, validation and test sets.

Next, the data was segmented following the sliding window
approach. Since the data was split by subject, the independence
between sets is guaranteed, and the sliding windows approach does
not introduce bias at the evaluation time. The sliding windows
for UCIHAR and PAMAP2 datasets were created following the
data segmentation protocol described in their original publications
verbatim. In the first case, the data was segmented in windows of
2.56 seconds (i.e., 128 samples) with 50% overlap. For the PAMAP2
dataset, 5.12 seconds (i.e., 512 samples) with 1 second shift (i.e., 100
samples). In the case of the MHEALTH and REALDISP datasets, we
followed the same protocol as for UCIHAR because the data were
collected at the same sampling rate for both datasets.

4.3 Models Configuration
All our experiments are based on a 3-GraphConvLayer GNN [25],
followed by a ReLU activation and dropout after each of the first two
convolutions. Then, 2-Fully-Connected layers serve as the final clas-
sifier. We trained the model for 500 epochs and used early stopping

Figure 1: Contrastive global and local activity graph representations for HAR.



Graph Contrastive Learning for HAR SAC ’25, March 31-April 4, 2025, Catania, Italy

if the validation loss did not improve for 100 consecutive epochs.
The models were optimized on the hyperparameters using the Tree-
structured Parzen Estimator algorithm [5], implemented using the
hyperopt python library [6]. The learning rate and weight decay
were sampled from a log uniform distribution from the given lower
and upper boundaries, and quantized to the specified increment
value, i.e., the sampled value will be rounded to the nearest multiple
of increment 𝑖𝑛𝑐 . The values in the hyperparameters search space
were chosen in a way that they cover the values found in seminar
GNNs-related papers [10, 20, 31]. The values in the search space
for hyperparameters optimization are shown in Table 1.

Table 1: Hyperparameters optimization search space.

*learning
rate

*weight
decay

*layer
dropout

*classifier
dropout

hidden
channels

batch
norm

AGGR READOUT

1e-4,
1e-2
inc: 1e-5

1e-5,
1e-3
inc: 1e-6

0.0,
0.6
inc: 0.1

0.0,
0.6
inc: 0.1

32,
64,
128

True
False

add
mean
max

add
mean
max

* min and max values of a range with increment 𝑖𝑛𝑐

4.4 Loss functions
The baseline models, based on the G𝑔𝑙𝑜𝑏𝑎𝑙 and G𝑙𝑜𝑐𝑎𝑙 represen-
tations, were trained using the Adam optimizer [19] to minimize
the Categorical Cross Entropy Loss, which is used for multi-class
classification problems like the one presented in this work.

LCE = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦𝑖,𝑐 log(𝑝𝑖,𝑐 ) (6)

where 𝑁 is the number of samples in the dataset or the batch size,
𝐶 is the number of classes in the classification problem, 𝑦𝑖,𝑐 is the
ground truth label for sample 𝑖 , and 𝑝𝑖,𝑐 is the predicted probability
for sample 𝑖 for class 𝑐 .

In the case of the contrastive learning approach, the models were
trained on a composite loss function that combines the classification
loss and the contrastive loss. Categorical Cross Entropy Loss (eq. 6)

was used for the supervised classification, and InfoNCE loss (eq. 7)
was used for the contrastive part.

LinfoNCE = − log exp(sim(𝑧𝑖 ,𝑐𝑖 ) )
exp(sim(𝑧𝑖 ,𝑐𝑖 ) )+

∑𝑁
𝑗=1 exp(sim(𝑧𝑖 ,𝑐 𝑗 ) )

(7)

where𝑁 is the batch size, 𝑧𝑖 is the representation of a global positive
sample ℎG𝑔𝑙𝑜𝑏𝑎𝑙

, 𝑐𝑖 is the representation of the corresponding con-
trastive local positive sample ℎG𝑙𝑜𝑐𝑎𝑙+ , 𝑐 𝑗 is a corrupted version of
𝑐𝑖 , representing the contrastive local negative sample ℎG𝑙𝑜𝑐𝑎𝑙− , and
sim(𝑧𝑖 , 𝑐) is a similarity function (e.g., cosine similarity) between
global (𝑧𝑖 ) and local representations (𝑐). Hence, the loss function
for contrastive learning is given by:

L = LinfoNCE + LCE (8)

4.5 Performance evaluation
After hyperparameter optimization, the models were updated with
the entire training, and validation sets. The learning rate of the best
trained model was reduced by a factor of 0.1 to avoid the model
learning totally different weights. The model update is stopped
when the validation loss does not improve for 10 epochs. The final
model is evaluated on the accuracy and macro f1-score obtained
on the holdout test set.

5 Results and Discussion
This section shows the results and discusses the findings obtained
from the experiments executed in this work.

5.1 Different graph constructions.
The first set of experiments was performed using the global and
local correlation matrices described in Section 3.1. The global rep-
resentation captures the correlation between sensor data channels
along the entire training data. On the contrary, the local model
captures the correlations within a time window frame. Comparing
just these two models (see Table 2), the results are consistent across
all datasets in favor of the global model. However, the difference

Table 2: Classification accuracy and macro f1-score of the models on all datasets. Best in bold, second best underlined.

Params UCIHAR MHEALTH PAMAP2 REALDISP

(millions) ↓ acc↑ f1↑ acc↑ f1↑ acc↑ f1↑ acc↑ f1↑
CNN [32] 0.09 86.06 84.38 86.00 82.21 74.55 73.63 90.08 89.05
2-LSTM [23] 0.08 84.74 83.38 80.36 77.95 75.92 73.53 88.04 83.63
4-CNN-LSTM [23] 1.49 88.14 86.71 81.3 80.02 60.57 55.95 71.77 73.31
DeepConvLSTM [26] 2.92 89.42 87.82 83.74 79.75 80.53 77.92 88.26 89.34
Self-Attention [22] 0.43 85.00 85.00 79.00 78.00 83.00 81.00 72.00 68.00
ResGCNN [37] 5.29 83.13 83.33 86.00 84.03 82.18 81.97 77.75 74.35

Global (ours) 0.22 89.10 89.20 87.41 87.46 86.86 86.36 93.65 91.52
Local (ours) 0.09 88.42 88.80 86.56 86.61 81.29 83.12 84.03 82.59
contrastive𝑎𝑙𝑙 (ours) 0.43 90.81 91.07 89.66 89.82 80.44 82.28 90.37 89.91
contrastive𝑒𝑑𝑔𝑒𝑠 (ours) 0.43 89.93 90.28 90.32 90.44 83.71 84.64 92.12 91.02
contrastive𝑛𝑜𝑑𝑒𝑠 (ours) 0.43 91.43 91.82 90.60 91.00 82.91 84.3 88.26 86.13
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between the global and local models for UCIHAR and MHEALTH
dataset is small, contrary to the difference found for PAMAP2 and
REALDISP datasets. The PAMAP2 dataset was the only one con-
taining missing data. The results reported for the Local model on
the PAMAP2 dataset come from the data that were cleaned using
interpolation to fill missing values. Hence, the data windows having
mostly interpolated datapoints in the local model do not allow to
properly define the topology and the strength of the connections,
as opposed to the global model. Looking at global or local correla-
tions independently, the global view allows GNNs to learn a better
representation of the sensor data, even under the presence of noise
like in the PAMAP2 dataset.

These results indicate that Pearson correlation is a viable op-
tion to extract the hidden topology between signals from wearable
sensors. Figure 2 shows the confusion matrices of accuracy ob-
tained with the Global model on all datasets. The model struggles
to distinguish between standing and sitting activities in UCIHAR,
MHEALTH, and PAMAP2. The model also confuses running and
jogging activities in MHEALTH and REALDISP. This shows that
there are common patterns, shared across all datasets, associated
with a particular activity, and that GNN-based models are able to
learn those patterns. Interestingly, the model shows consistency
across datasets even for those activities that it fails to classify.

5.2 Contrastive learning
The results of contrastive learning experiments also show the con-
sistency of the GNN-based models. A single perturbation, either to
the nodes or edges, produced the best results in all cases. Compared
to the local representation alone, combining it with the global one
allows the models to learn stronger vector representations that
boost the performance of the classifiers. Our contrastive learning
approach is suitable for HAR as it allows the model to learn the
shared and also the uncommon patterns between similar activities.
The walking up and walking down activities involve the same body
parts; and thus, they share common patterns. We argue that while
the global model learns those shared patterns, the local model re-
fines the learning process with the patterns that are intrinsic to
each time window frame and related to the way the activity is per-
formed. This can be observed in the confusion matrix calculated
with the predictions of the Global model in UCIHAR. The Global
model confuses the walking up and walking down activities (Figure
2a), which we attribute to the fact that these activities have similar
global patterns. On the contrary, the contrastive learning approach
on UCIHAR improves significantly on these two activities (Fig-
ure 3a). Similar behavior occurs in MHEALTH. The Global model
confuses the standing and sitting, waist bend forward and knees
bending, and jogging and running activities (Figure 2b). In this case,
the contrastive learning model improves on the standing and sitting
activities, and removes the confusion between waist bend forward
and knees bending activities almost completely (Figure 3b).

The contrastive learning approach shows significant improve-
ment when the global and local representation models have similar
performance. This may be considered as a prerequisite for applying
the contrastive learning approach. This is the case for UCIHAR and
MHEALTH datasets where the contrastive model achieves 2.65 and
3.54 percentage points improvement, respectively. On the contrary,

for PAMAP2 and REALDISP datasets, where the performance of
global and local models was not on par, the contrastive learning
approach did not contribute to performance gains.

The contrastive approach shows a promising direction for further
exploration. In this approach, we contrasted different views of the
graphs representing the same activities. Incorporating different
graph augmentation techniques for creating a richer set of views
to contrast is considered part of the future work.

5.3 Comparison with other Deep Learning
models

We compared our approach with other Deep Learning approaches
for HAR reported in literature. Namely, CNN [32], 2-LSTM [23],
4-CNN-LSTM [23], DeepConvLSTM [26], Self-Attention [22], and
ResGCNN [37]. The results presented in Table 2 show that our
global representation allows our model to outperform all other
models in all datasets in terms of f1-score. In terms of accuracy, our
global model surpasses all of the models on MHEALTH, PAMAP2,
and REALDISP datasets by a large margin. On UCIHAR dataset,
only DeepConvLSTM is on par with our model, while the others
show worse results. Moreover, leveraging the mutual information
between the global and local representations of the human activities,
our contrastive learning approaches improves the performance even
further, surpassing all other models on all of the tested datasets.

In terms of model complexity, our smaller model, local, has 0.09M
parameters being on par with the CNN and 2-LSTM models. How-
ever, our model exhibits a clear performance gain in UCIHAR,
MHEALTH and PAMAP datasets. Likewise, our global model, with
0.22M parameters, is smaller than all other counterparts, except
CNN and 2-LSTM, but outperforms all of them in accuracy and
f1-scores in all datasets.

Our results confirm the performance drop of ResGCNN [37]
when model evaluation is correctly implemented, fixing the issue of
the performance overestimation caused by random data splits leak-
ing training data into the test set [15, 30]. We evaluated ResGCNN
ensuring the independence between training, validation, and test
sets by partitioning the data by subject as described in Section 4.2.
The best result obtained with that model was a 86% accuracy for
the MHEALTH dataset, which is significantly lower than the ≈98%
reported in [37]. Our contrastive model shows a clear improvement
with an accuracy of 90.60%. It is important to point out that the
difference in complexity between our models and ResGCNN is very
large. Our more complex model is the one used for Contrastive
Learning with 0.43M parameters, while ResGCNN has 5.29M. Our
model is ≈ 91% smaller but it achieves a much higher performance.
This shows that very deep models, at least for these datasets, are not
necessary. The performance decrease of ResGCNN shows that, even
using residual connections, the oversmoothing problem, common
in GNNs, still affects the learning capabilities of the model.

6 Conclusions
In this work, we leveraged the spatial dependencies between IMU
sensors’ data channels by modeling them as a graph. Using two
GNNs-based encoders, we learned global and local representations
of the intra- and inter-sensor dependencies, and exploited those rep-
resentations by maximizing the mutual information between them
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Figure 2: Confusion matrices of accuracy with the Global model on all datasets.

Figure 3: Confusion matrices of accuracy with the Contrastive model on UCIHAR and MHEALTH datasets.

following a contrastive learning approach. We evaluated our ap-
proach on four HAR benchmark datasets, showing a significant per-
formance increase compared to previous studies, including CNNs,
LSTMs, CNN-LSTMs, Self-Attention, and GNN-based models.

The results of the experiments show that the underlying struc-
ture of the IMU sensors’ data channels and the strengths of their
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connections can be modeled as a graph. In addition, they evidence
that such graphs can be properly encoded by a GNN-based model
and the embeddings learned by the GNNs can be used downstream
for Human Activity Recognition. The results confirm that consider-
ing other types of relationships, beyond the time dimension, and
incorporating spatial dependencies into the model, allows uniquely
characterize each human activity. The best performing models
achieved an accuracy and macro f1-score above 90% for the UCI-
HAR, MHEALTH, and REALDISP datasets, and an accuracy and
macro f1-score above 86% for the PAMAP2 dataset. This shows that
GNNs are a good alternative for Human Activity Recognition.

A promising future direction is to combine GNNs with temporal
models to fully leverage the spatio-temporal relationships and ex-
plore Temporal GNNs for HAR. Augmentation techniques to the
sensor data itself can improve the contrastive learning approach
further. The effects of scaling, inverting the signals, reversing the
time direction, stretching and warping the time series, together
with the graph augmentation techniques, are worth investigating.
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